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Abstract

Three-dimensional urban environment simulation is a powerful tool for informed urban planning.
However, the intensive manual effort required to prepare input 3D city models has hindered its
widespread adoption. To address this challenge, we present VoxCity, an open-source Python
package that provides a one-stop solution for grid-based 3D city model generation and urban
environment simulation for cities worldwide. VoxCity’s ‘generator’ subpackage automatically
downloads building heights, tree canopy heights, land cover, and terrain elevation within a specified
target area, and voxelizes buildings, trees, land cover, and terrain to generate an integrated voxel
city model. The ‘simulator’ subpackage enables users to conduct environmental simulations,
including solar radiation and view index analyses. Users can export the generated models using
several file formats compatible with external software, such as ENVI-met (INX), Blender, and
Rhino (OBJ). We generated 3D city models for eight global cities, and demonstrated the calculation
of solar irradiance, sky view index, and green view index. We also showcased microclimate
simulation and 3D rendering visualization through ENVI-met and Rhino, respectively, through the
file export function. Additionally, we reviewed openly available geospatial data to create guidelines
to help users choose appropriate data sources depending on their target areas and purposes. VoxCity
can significantly reduce the effort and time required for 3D city model preparation and promote
the utilization of urban environment simulations. This contributes to more informed urban and
architectural design that considers environmental impacts, and in turn, fosters sustainable and
livable cities. VoxCity is released openly at https://github.com/kunifujiwara/VoxCity.

Keywords: Urban morphology, Digital Twin, Thermal environment, Ray-tracing, Thermal
comfort, Built environment, View factor

1. Introduction

Three-dimensional urban environment simulations facilitate assessing various conditions
including outdoor heat stress [1, 2], wind flow [3], visual perception [4, 5], building energy demand
[6, 7], air quality [8], and noise propagation [9, 10], at high spatial and temporal resolution.
Their results help diverse applications including policy-making, urban planning, city management,
architectural and landscape design [11, 12, 13]. Such urban environment simulations require
3D city models with semantic information for diverse elements. For example, microclimate
simulation uses heat-related parameters such as heat conductivity, solar reflectance, transmittance,
and evaporation coefficients for each object [14, 15]. Therefore, models need to define semantic
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classes of objects, such as buildings, roads, vegetation, and water bodies, that determine these
parameters. Simulation of visual perception also requires similar semantic information to evaluate
visibility of greenery or buildings [16, 17, 18]. However, in most cases of urban environment
simulations, researchers and engineers must prepare such 3D city models themselves due to a
lack of available data sources [19, 20]. The intensive manual effort required to create or adapt
these models has been a significant bottleneck for urban environment simulations. Although some
cities have prepared open 3D city models with semantic attributes, the coverage of such data is
currently limited. Moreover, existing models may not be simulation-ready because of issues such
as incompatible data formats, unsealed solid geometries, and insufficient semantic information
[3, 21, 19].

Meanwhile, an increasing amount of global geospatial data relevant to 3D city models has been
openly released in the last few years, largely due to rapid advancements in deep learning techniques
[22, 23, 24, 25]. For instance, Sirko et al. [26] released building height data with a 4 m spatial
resolution for Africa, South Asia, Southeast Asia, Latin America and the Caribbean; Tolan et al.
[23] published global canopy height data at a 1 m resolution; Zanaga et al. [24] released land cover
data with worldwide coverage at a 10 m resolution; and Hawker et al. [25] created global terrain
elevation data with a 1 Arc-second (30.9 m at the equator) resolution, based on Copernicus DEM,
canopy height and building footprint data. We can use these open geospatial datasets to create 3D
city models with semantic information regarding buildings, trees, land cover, and terrain. However,
while these datasets can reduce the efforts required to collect necessary information and increase
the coverage, they still require intensive manual efforts to integrate them and reconstruct 3D city
models of sufficient quality for advanced uses such as simulations. Each dataset has different
data types, such as raster and vector, and varying spatial resolutions, making the data integration
process complex. To scale applications of urban environment simulation globally, it is desirable to
automate these manual efforts for data integration. Moreover, even with simulation-ready models,
working in simulation software remains time-consuming, particularly for tasks such as data import,
boundary condition settings, and result data export.

Several open-source packages have been developed to address these challenges. 3dfier [27] and
City4CFD [21, 3] automate the integration of land use and point cloud data to generate semantic
3D city models. They enable users to prepare input 3D city models for urban environmental
simulations; however, point cloud data is not available for most cities, and they do not incorporate
tree canopies. UMEP [28] offers functionality to simulate urban thermal and wind environments
using 3D city models; however, users need to prepare input datasets including building digital
surface models (DSMs) and vegetation DSMs, which require manual efforts, and are, moreover,
not available for most cities. Additionally, to the best of our knowledge, there are no open packages
that provide seamless functionality encompassing open geospatial data integration, 3D city model
generation, and urban environment simulation.

To bridge the gap between 3D model generation and urban environment simulation, a meshing
process fundamentally needs to be incorporated. Many urban environment simulation methods
include the process where 3D city models are split into meshes with certain scales. For example,
Computational Fluid Dynamics (CFD) for wind environment simulation requires volume meshes
for fluid (air) domains and surface meshes for solid objects, such as buildings and ground [29].
Ray-tracing for solar irradiance simulation requires surface meshes of solid objects, where solar
radiation is reflected or absorbed [30]. There are two principal methods for the meshing process:
structured meshing and unstructured meshing. Structured meshing is a grid-based approach to
create cuboid volume meshes and rectangular surface meshes [31, 32]. Unstructured meshing
does not rely on a grid and generates polyhedral volume meshes and triangular surface meshes,
allowing for more flexibility in shape and proportion [33, 29]. Numerous software packages
employ structured meshing due to its lower computational load for both calculation and memory,
as well as its stability in numerical simulations. Unstructured meshing has the advantage of
incorporating curved surfaces; however, it can generate low-quality meshes with overly sharp or
blunt vertex angles, leading to divergence or low accuracy in numerical simulations. For city-
scale applications, structured meshing should be more desirable than unstructured meshing. More
specifically, the voxel-based approach, which applies the same mesh size for the entire domain in
structured meshing[34, 35, 36], offers advantages in simplicity, as a single 3D array and a specified
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Figure 1: Framework of the development of VoxCity.

voxel size can represent the entire mesh. Moreover, voxels have better compatibility with raster
formats that are commonly used in geospatial data, such as land cover, tree canopy height, and
terrain elevation.

Therefore, this paper introduces ‘VoxCity’, an open-source Python package that provides a
seamless solution for voxel-based geospatial data integration, 3D city model generation, and urban
environment simulation. The framework is illustrated in Figure 1. We review open geospatial
data, including building height, tree canopy height, land cover, and terrain elevation data types,
and select appropriate data sources for our 3D city model generator based on metrics such as
coverage, accuracy, format and accessibility. VoxCity automates the process of downloading,
voxelizing, and integrating geospatial data from the selected sources to generate voxel-based 3D
city models with semantic information. The package includes a subpackage for urban environment
simulation, providing users an end-to-end workflow from data acquisition and integration through
model generation and simulation. Furthermore, VoxCity supports multiple export file formats,
ensuring compatibility with various external 3D modeling and simulation software packages.

2. Background and Related Work

2.1. Urban Environment Simulation

Climate change [37] has intensified heat-related challenges like frequent heat waves [38, 39]
and urban heat island effects [40], spurring increased assessment of outdoor heat stress and thermal
comfort through CFD [41, 2], radiation transfer models [1, 42, 43], and heat conduction and energy
balance analyses [44]. The objectives of microclimate simulations have encompassed not only
heat-related health issues but also other diverse aspects such as energy consumption for heating,
ventilation, air conditioning (HVAC), and lighting [6, 7, 45, 46], air quality [47, 48], wind comfort
[49, 50], wind pressure on building surfaces [51, 52], and sunlight and ultraviolet exposure focusing
on human skin health [53]. Additionally, numerous studies have reported impacts of buildings
[54, 55, 56, 57], trees [58, 59, 60, 61, 62], low vegetation [63, 64, 65], water bodies [66, 67, 68],
and terrain morphology [69] on the microclimate, indicating the importance of including these
urban elements in 3D city models for simulations.

Meanwhile, many studies have conducted urban environment simulations to assess the visual
comfort of streetscapes [5] and window views [70, 71]. Specifically, sky view factor (SVF) or sky
view index (SVI) [72] and green view index (GVI) [73, 71, 74] have mainly been evaluated as
quantitative indicators using 3D city models with buildings, trees, and low vegetation land covers.
Numerous studies have employed street view imagery and computer vision techniques instead
of simulations with 3D city models to evaluate view indices [75, 76, 77, 78, 79]. This enables
view analyses without preparing detailed 3D city models; however, such analyses cover only
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viewpoints along street networks, and furthermore, not all streets have sufficient imagery. These
view indicators have been assessed focusing not only on visual comfort but also on walkability
[80, 76] and bikeability [81] of streets, the well-being of city dwellers [82], and the preferences of
residents and real-estate prices [83, 84]. The visibility of water features, including the ocean, lakes,
and rivers, has also been discussed in the same context [85].

Table A.7 in Appendix illustrates the relationships between simulation categories and the urban
elements incorporated into 3D city models used in previous studies. Our literature review revealed
that buildings, trees, land cover, water bodies, and terrain elevation have been included as essential
information in 3D city models across different simulation objectives.

2.2. Creation of 3D city models

Numerous studies have prepared their 3D city models by processing point clouds acquired
through LiDAR measurements [42, 86, 87, 27], or by processing polygon data acquired through
photogrammetry methods [88]. While these methods can reduce the manual effort required
for 3D city model preparation, their input data—point cloud data from LiDAR or multi-view
photography—is not readily available in most cases.

Meanwhile, an increasing number of studies have employed open 3D city models that have
been individually released by countries or cities [89, 90, 91, 92, 93]. However, in most cases, we
still need to create 3D city models ourselves because cities with such available models are limited
[19]. Furthermore, the data, even when openly available, is not always directly compatible with
urban environment simulations. For instance, while 3D city models fundamentally include building
data, only a portion of them have other semantic information, including trees and land cover [20].
Many software solutions for urban environment simulation require their own input file formats for
3D city models, such as the ENVI-met1 geometry file (INX) and the ANSYS2 mesh file (MSH).
Additionally, some simulations require geometrically complete models for their meshing processes.
Software for CFD simulations tends to require precise watertight geometries for solid objects and
does not accept polygons with gaps and intersections [3, 21]. Therefore, even for studies targeting
areas with open 3D city models, many of them need to add missing information from other data
sources, convert file formats, or modify them to meet quality standards.

Our review of the preparation of 3D city models highlights the significant lack of available
3D city models with sufficient quality for urban environment simulations, while there is a strong
demand for methods to generate 3D city models from openly available data sources for many cities.

2.3. Related work

There are several open-source tools to generate 3D city models. For instance, 3dfier [27] is an
open-source software to generate 3D building models from point cloud data and building footprints.
BlenderGIS3 is a plug-in tool for Blender4, a free and open-source 3D modeling software, which
generates 3D city models by combining building data from OpenStreetMap5 and terrain elevation
from Shuttle Radar Topography Mission (SRTM) [94]. However, we were unable to find any open-
source tools that could generate 3D city models containing all essential elements and attributes,
including buildings, vegetation, water bodies, and terrain.

Several previous studies suggest a potential solution to the demand for a semantic 3D city
model generator. Ding et al. [95] and Li and Wang [43] integrated multiple geospatial data to
create 3D city models with semantic information and conducted microclimate simulations using
the generated models. Specifically, Ding et al. [95] combined data on building height, land cover,
and terrain elevation, while Li and Wang [43] combined building height and tree canopy height.
Although Ding et al. [95] and Li and Wang [43] created land cover data using aerial imagery
and building data using aerial LiDAR data respectively, they directly used openly available data
sources for other data types. If these methods can be extended to encompass all essential data

1https://envi-met.com/
2https://www.ansys.com/
3https://blender-addons.org/blendergis-addon/
4https://www.blender.org/
5https://www.openstreetmap.org
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types—building height, land cover, canopy height, and terrain elevation—and if all these data can
be collected from openly and globally available data sources, such a tool would be highly beneficial
for many researchers and engineers working on urban environment simulations.

Existing open datasets vary considerably in their spatial coverage, accuracy, and resolutions.
Despite the importance of these factors for application in 3D city modeling and urban environment
simulation, we were unable to find any studies offering a systematic comparison for such datasets.
This gap underscores the importance of cataloging available open geospatial data, and evaluating
their quality and applicability in generating semantic 3D city models. However, no studies have
reviewed open geospatial data from this perspective.

Meanwhile, an increasing number of studies have proposed open-source tools as Python
packages [27, 96, 97, 98, 99, 100]. For example, Yap et al. [96] introduced the Python package
‘Urbanity’ to automate the construction of feature-rich urban networks at any geographical scale
and any location. Gholami et al. [97] developed a Python-based approach to assess microscale
human thermal stress in urban environments. Python is one of the most dominant programming
languages for data science, especially in machine learning. Many Python users openly share their
scripts and packages through platforms such as GitHub6 and PyPI7, facilitating easier and more
scalable distribution of developed tools.

Therefore, we propose a tool that offers two key contributions: reducing the manual effort
required to prepare 3D city models for urban environment simulations, and enabling broader
applications of these simulations in environmental research and urban-architectural design projects.
To achieve these contributions, we present three main developments:

1. Review of open geospatial data. We review publicly available geospatial datasets—including
building height, tree canopy height, land cover, and terrain elevation—focusing on crucial
metrics for 3D city modeling, such as coverage, spatial resolutions, and accuracy. We
identify suitable data sources for the 3D city model generation process and compile them into
a comprehensive catalog. This catalog will assist researchers and practitioners in selecting
appropriate data sources for 3D city model preparation and urban environment simulation,
depending on their purposes and target areas.

2. Integration of open geospatial data. We propose a tool that automates the integration of
publicly available geospatial data to generate semantic 3D city models. This approach
enables users to prepare 3D city models and conduct urban environment simulations for
cities worldwide with minimal manual effort.

3. Open-source Python package. We release our tool as an open-source Python package,
allowing users to easily adopt, modify, and combine it with other Python libraries. Through
this release, we aim to streamline 3D city model preparation and encourage broader
collaboration and innovation within the community.

3. Review of open geospatial data

In this section, we review open geospatial data related to building height, tree canopy height,
land cover, and terrain elevation, comparing spatial coverage, resolution, platform, and file format.
Sections 3.1 to 3.4 discuss each data type in detail. To select data sources to review, we set
two criteria: (1) global or multinational coverage and (2) horizontal resolution finer than 10
m. We set this 10 m threshold, following previous studies that employ 10 m as the maximum
mesh size for wind and microclimate simulation [101, 102, 103]. Additionally, our data review
has not incorporated existing 3D city models such as Project PLATEAU for Japan8 because this
work specifically focuses on contributing to cities without such available models. This limitation
is discussed in Section 5.1. Based on this review, we present a comprehensive data catalog in
Section 3.5 to guide readers in selecting suitable data sources for specific target areas and research
purposes.

6https://github.com/
7https://pypi.org/
8https://www.mlit.go.jp/plateau/open-data/
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3.1. Building height

Following the aforementioned criteria for spatial coverage and resolution, we selected
OpenStreetMap9 (OSM), Overture10, EUBUCCO v0.111 [104], UT-GLOBUS [22], Open
Buildings 2.5D Temporal dataset (OB2.5DT) [26], and Microsoft Building Footprints (MSBF)
[105] for review. Table 1 summarizes their characteristics. None of these sources provides
complete, worldwide coverage, underscoring the importance of selecting a dataset that best suits
the target city.

Table 1: Comparison of building height data sources. RMSE and MAE denote Root Mean Squared Error and Mean Absolute
Error, respectively.

Dataset Spatial Coverage Resolution
/Accuracy

Platform
/File format

Source
/Data Acquisition

OpenStreetMap Worldwide (24%
completeness in city
centers [106])

- / Not
provided

API / JSON (vector) Volunteered / updated at
irregular intervals

Overture Worldwide - / Not
provided

API / JSON (vector) OpenStreetMap, Esri
Community Maps
Program, Google Open
Buildings, etc. / updated at
irregular intervals

EUBUCCO
v0.1 [104]

27 EU countries and
Switzerland (378
regions and 40,829
cities)

- / Not
provided

Files on the official website
(https://eubucco.com/),
Zenodo / GPKG (vector)

OpenStreetMap,
government datasets /

2003-2021 (majority is
after 2019)

UT-GLOBUS
[22]

Worldwide (more
than 1200 cities or
locales)

- / 7.8 m
(RMSE,
height)

Files on Zenodo / GPKG (vector) Prediction from building
footprints, population,
spaceborne nDSM / not
provided

Microsoft
Building
Footprints
[105]

North America,
Europe, Australia

- / Not
provided

List of download links with
QuadKey / GeoJSON (vector)

Prediction from satellite or
aerial imagery / 2018-2019
for the majority of the input
imagery

Open Buildings
2.5D Temporal
dataset [26]

Africa, Latin
America, and South
and Southeast Asia

4 m / 1.5
m (MAE,
height)

Google Earth Engine, Google
Cloud Storage / GeoTIFF
(Raster)

Prediction from satellite
imagery / 2016-2023

Figure 2 illustrates building height maps from the reviewed sources for Paris, Rio de Janeiro,
and Nairobi. In OSM, some buildings lack footprints, and some footprints lack height attributes,
reflecting its nature as Volunteered Geographic Information (VGI) [107]. Moreover, while OSM
has higher coverage for footprints and heights in central areas of major cities (e.g., Paris and Rio
de Janeiro), coverage in rural areas (e.g., Nairobi) is often poor. Overture displays coverage similar
to OSM in Paris and Rio de Janeiro, but differs in footprint geometries and height values. For
Nairobi, it offers substantially better footprint coverage than OSM. We attribute such differences
to Overture’s data acquisition strategy: it uses OSM as a baseline and augments coverage with
other sources, including MSBF, Google Open Buildings, and the Esri Community Maps Program
(as detailed in their documentation: https://docs.overturemaps.org/guides/buildings).
EUBUCCO exhibits higher completeness than both OSM and Overture in Europe, often providing
more detailed footprints. This is partly due to the inclusion of governmental datasets in addition to
those from OSM. OB2.5DT covers most buildings and suggests reasonably good height accuracy
for low- and mid-rise buildings; however, it underestimates tall buildings exceeding 100 m. In
contrast, MSBF and UT-GLOBUS tend to have lower footprint accuracy than OSM, Overture,
and EUBUCCO; some footprints deviate significantly from actual building outlines, and multiple
buildings can appear as a single merged footprint.

9https://www.openstreetmap.org
10https://overturemaps.org
11https://eubucco.com/
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Figure 2: Examples of building height maps for Paris, Rio de Janeiro, and Nairobi. Gray indicates buildings without height
data. Basemap: © OpenStreetMap contributors,© CARTO. Imagery: Google satellite tiles.
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Overall, OSM, Overture, and EUBUCCO demonstrate sufficient quality for many applications,
whereas MSBF, UT-GLOBUS, and OB2.5DT are less suited as sole sources for 3D city model
generation. They can, however, serve as complementary data for missing building heights in
EUBUCCO, OSM, and Overture. In Figure 2, the panels labeled “OSM + [dataset]” and “Overture
+ [dataset]” illustrate the integration of OSM or Overture footprints with either MSBF, UT-
GLOBUS, or OB2.5DT. Where OSM or Overture footprints lack a height value, the missing
attribute is retrieved from the intersecting footprints in a complementary data source. If a building
intersects multiple footprints, the final height is determined by a weighted average based on
intersection area. The resulting combined data exhibit more complete height coverage than OSM
or Overture alone.

Based on this review, we decided to use EUBUCCO, OSM, and Overture as base building
height data. OB2.5DT, UT-GLOBUS, and MSBF are used as complementary sources to fill in
missing values.

3.2. Land cover

To select data sources for review, we set criteria requiring land cover classes suitable for general
urban environment simulations, in addition to the aforementioned criteria for spatial coverage and
resolution. Therefore, we excluded datasets that are restricted to specific land cover types (e.g., ice,
crop, or forest) [108, 109, 110, 111].

As a result, we selected ESA World Cover 10 m 2021 V200 (ESA) [24], Esri 10m Annual
Land Cover (2017-2023) (Esri) [112], Dynamic World V1 (DW) [113], OpenStreetMap12 (OSM),
OpenEarthMap Japan (OEMJ) [114], and UrbanWatch (UW) [115] for our further review.
Although OEMJ and UW each cover only one nation, we included them because of their
exceptionally high (1 m) resolution. Table 2 compares key metrics for these sources.

Table 2: Comparison of land cover data sources.

Dataset Classes Spatial
Coverage

Resolution
/Accuracy

Platform
/File format

Source
/Data Acquisition

ESA World
Cover 10 m 2021
V200 [24]

Tree cover, Shrubland,
Grassland, Cropland, Built-
up, Bare/Sparse vegetation,
Snow and ice, Permanent water
bodies, Herbaceous wetland,
Mangroves, Moss and lichen

Worldwide 10 m / 76.7% Google Earth
Engine, Zenodo /
GeoTIFF (Raster)

Prediction from
satellite imagery /

2021

Esri 10m Annual
Land Cover
(2017-2023)
[112]

Water, Trees, Flooded
Vegetation, Crops, Built Area,
Bare Ground, Snow/Ice, Clouds,
Rangeland

Worldwide 10 m / 85% Google Earth
Engine / GeoTIFF
(Raster)

Prediction from
satellite imagery /

2017-2023

Dynamic World
V1 [113]

Water, Trees, Grass, Flooded
vegetation, Crops, Shrub and
scrub, Built, Bare, Snow and ice

Worldwide 10 m / 73.8% Google Earth
Engine, Zenodo /
GeoTIFF (Raster)

Prediction from
satellite imagery /

updated daily

OpenStreetMap Bare rock, Rock, Sand,
Desert, Grass, Park, Industrial,
Construction, Railway, Parking,
Highway, Wood, Forest, Tree,
Water, Waterway, Bay, Ocean,
Farmland, Building, etc.

Worldwide - / Not
provided

API / JSON
(vector)

Volunteered / updated
at irregular intervals

OpenEarthMap
Japan [114]

Bareland, Rangeland,
Developed space, Road,
Tree, Water, Agriculture
land, Building

Japan ∼1 m / 80% Webmap
(downloadable
as tiles) / PNG
(Raster)

Prediction from aerial
imagery / 1974-2022
(mostly after 2018 in
major cities)

UrbanWatch
[115]

Building, Road, Parking Lot,
Tree Canopy, Grass/Shrub,
Agriculture, Water, Barren,
Other

22 major
cities in the
US

1 m / 92% Google Earth
Engine, Google
Drive / GeoTIFF
(Raster)

Prediction from aerial
imagery / 2014–2017

Figure 3 shows example land cover maps from the reviewed datasets for Osaka, Los Angeles,
and São Paulo. To allow direct comparisons, we harmonized the class definitions across all datasets

12https://www.openstreetmap.org
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Figure 3: Examples of land cover data for Osaka and Los Angeles. Basemap: © OpenStreetMap contributors, © CARTO.
Imagery: Google satellite tiles.
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using the conversion rules presented in Table 3. Overall, OEMJ (for Osaka) and UW (for Los
Angeles) most closely match the actual land cover when compared to aerial imagery. OSM also
aligns well but tends to miss smaller patches of vegetation (particularly trees). ESA captures
major water bodies and broad vegetation patterns but is less detailed than OEMJ, UW, or OSM. In
OSM, some areas (e.g., São Paulo) lack detail in spatial variation, indicating lower completeness
than ESA. Esri and DW indicate low completeness, classifying most pixels as “Developed space”
despite these areas actually containing diverse classes. We attribute the relatively low performance
of Esri and DW to their primary focus not being on urban areas, resulting in training and validation
data that lacks detailed annotations for urban regions. It is important to note that, while this is not
applicable to the examples in Figure 3, OSM sometimes misses the water class for oceans because
some ocean areas in OSM lack water object patches.

Table 3: Class definition harmonization across different land cover data sources.

Class Allocated classes

ESA Esri DW OEMJ UW OSM

Bareland Barren/sparse
vegetation

Bare
Ground

Bare Bareland Barren quarry, brownfield, bare_rock, scree, shingle,
rock, sand, desert, landfill, beach

Rangeland Grassland Grass Grass Rangeland Grass/Shrub grass, meadow, grassland, heath, garden, park

Shrub Shrubland Scrub/Shrub Shrub and
Scrub

Shrub – scrub, shrubland, bush, thicket

Agriculture
land

Cropland Crops Crops Agriculture Agriculture farmland, orchard, vineyard, plant_nursery,
greenhouse_horticulture, flowerbed, allotments

Tree Trees Trees Trees Tree Tree Canopy wood, forest, tree, tree_row

Moss and
lichen

Moss and
lichen

– – – – moss, lichen, tundra_vegetation

Wet land Herbaceous
wetland

Flooded
Vegetation

Flooded
Vegetation

Wetland – wetland, marsh, swamp, bog, fen

Mangrove Mangroves – – Mangrove – mangrove, mangrove_forest, mangrove_swamp

Water Open water Water Water Water Water, Sea water, waterway, reservoir, basin, bay, ocean,
sea, river, lake

Snow and
ice

Snow and
ice

Snow/Ice Snow and
Ice

Snow – glacier, snow, ice, snowfield, ice_shelf

Developed
space

Built-up Built Area Built Developed Parking Lot industrial, retail, commercial, residential,
construction, railway, parking, islet, island

Road – – – Road Road highway, road, path, track, street

Building – – – Building Building building, house, apartment,
commercial_building, industrial_building

No Data – No Data,
Clouds

– – Unknown unknown, no_data, clouds, undefined

Based on this review, we excluded Esri and DW, and included the remaining datasets as data
source options in our package.

3.3. Tree canopy height

To screen datasets, we set criteria: (1) coverage of urban areas and (2) no restriction to
specific tree species, in addition to the aforementioned criteria for spatial coverage and resolution.
Therefore, we excluded datasets that focus on forested regions or specific tree species [116, 117].
We also considered open tree inventories, which typically include a database of individual trees
(e.g., location, size, age, species) [118, 119, 120]. However, each city or country tends to maintain
its own tree inventory format, and coverage rarely extends beyond one locality [121, 122, 123].
Hence, no standardized globally comprehensive tree inventory dataset was identified. Ultimately,
we selected the High Resolution 1 m Global Canopy Height Maps (META) [23] and ETH Global
Sentinel-2 10 m Canopy Height (2020) (ETH) [124] for further review. Table 4 provides details on
these data sources.

Figure 4 compares canopy height maps from META and ETH for areas in London and
Melbourne, alongside corresponding street-level and satellite images. In London, the street-level
photo indicates trees over 10 m tall (judging from the height of double-decker buses), while META
reports around 3 m and ETH 12 m for the same location, suggesting underestimation by META and
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Table 4: Comparison of tree canopy height data sources

Dataset Coverage Resolution
/Accuracy

Platform
/File format

Source
/Data Acquisition

High Resolution 1 m Global
Canopy Height Maps [23]

Worldwide 1 m / 2.8 m
(MAE)

Google Earth Engine /
GeoTIFF (Raster)

Prediction from satellite
imagery / 2009 and 2020
(80% are 2018-2020)

ETH Global Sentinel-2 10 m
Canopy Height (2020) [124]

Worldwide 10 m / 6.0 m
(RMSE)

Google Earth Engine /
GeoTIFF (Raster)

Prediction from satellite
imagery / 2020

Figure 4: Examples of canopy height data for London and Melbourne. Basemap: © OpenStreetMap contributors, ©
CARTO. Imagery: Google street view, Google satellite tiles.
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more accurate performance by ETH. Meanwhile in Melbourne, ETH detects a canopy height of
around 10 m at a location that is primarily grass in street-level and aerial imagery, whereas META
shows almost no canopy. In this case, META appears more accurate, and ETH overestimates.
In short, META and ETH underestimate and overestimate canopy height, respectively, in certain
situations. Neither dataset consistently outperforms the other, so the choice depends on regional
characteristics and research requirements. We therefore include both options in our package,
allowing users to select according to their needs.

3.4. Terrain elevation

To select terrain elevation datasets, we set a resolution threshold of 1 Arc second (30.9 m at
the equator) instead of 10 m for other data types. This exception was made because, for terrain
elevation data with global coverage, only datasets with resolutions coarser than 1 Arc second
are available. We allowed this coarser resolution because terrain elevation in urban areas rarely
changes drastically at spatial scales less than 30 m. Additionally, we established a criterion
requiring a bare-earth model to exclude DEMs or DSMs that retain building and vegetation heights
[125, 126, 127, 128]. Consequently, we selected Forest And Buildings removed Copernicus
30m DEM (FABDEM) [25], DeltaDTM [129], USGS 3DEP 1m DEM (USDEM) [130], England
1m Composite DTM (ENGDTM) [131], Australian 5M DEM (AUSDEM) [132], and RGE Alti
(FRADEM) [133] for further review. While USDEM, ENGDTM, AUSDEM, and FRADEM
have only national coverage, they were incorporated because of their exceptionally fine spatial
resolution, ranging from 1 to 5 m.

Table 5 summarizes the characteristics of the selected datasets. FABDEM provides the most
extensive worldwide coverage, followed by DeltaDTM, which covers global coastal areas. While
the other datasets are limited to country-scale coverage, they offer superior horizontal resolutions
ranging from 1 to 5 m—significantly finer than those of FABDEM and DeltaDTM.

Table 5: Comparison of terrain elevation data sources

Dataset Coverage Resolution
/Accuracy

Platform
/File format

Source
/Data Acquisition

FABDEM [25] Worldwide 30 m / Built-up
areas: 1.12 m,
forests: 2.88 m
(MAE)

Google Earth Engine /
GeoTIFF (Raster)

Correction of Copernicus
DEM using canopy height
and building footprints data
/ 2011-2015 (Copernicus
DEM)

DeltaDTM [129] Worldwide
(Only for
coastal areas
below 10m +

mean sea level)

30 m / 0.45 m
(MAE)

Google Earth Engine /
GeoTIFF (Raster)

Copernicus DEM,
spaceborne LiDAR / 2011-
2015 (Copernicus DEM)

USGS 3DEP 1m
DEM [130]

United States 1 m / Not
provided

Google Earth Engine,
government website /
GeoTIFF (Raster)

Aerial LiDAR / 2004-2024
(mostly after 2015)

England 1m
Composite DTM
[131]

England 1 m / 0.15
m (RMSE, a
vertical accuracy
of LiDAR used)

Google Earth Engine,
government website /
GeoTIFF (Raster)

Aerial LiDAR / 2000-2022

Australian 5M
DEM [132]

Australia 5 m / 0.30 m
(error metric not
specified)

Google Earth Engine,
government website /
GeoTIFF (Raster)

Aerial LiDAR / 2001-2015

RGE Alti [133] France 1 m / 0.2 m
(RMSE, coastal
areas), 0.5 m
(RMSE, large
forest areas)

Google Earth Engine /
GeoTIFF (Raster)

Aerial LiDAR / Not provided

Figure 5 illustrates example terrain elevation maps for London and New York City derived from
the reviewed sources. ENGDTM and USDEM show more detailed spatial variation than the other
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Figure 5: Examples of terrain elevation data for London and New York City. Basemap: © OpenStreetMap contributors,©
CARTO. Imagery: Google satellite tiles.

datasets, consistent with their finer resolutions. The London maps display similar elevation values
across all sources, whereas the New York City maps show significant discrepancies, particularly
between FABDEM and USDEM. We attribute these differences to the varying methods and
resulting accuracy in removing building heights in areas with dense high-rise constructions.

Based on the observed advantages and disadvantages of each dataset in terms of coverage and
resolution, we decided to include all reviewed sources as options in our package.

3.5. Data catalog with guidelines for data selection

After reviewing data sources for building height, land cover, tree canopy height, and terrain
elevation, we compile a comprehensive data catalog for our package (Table 6). This catalog
includes guidelines to select appropriate data sources for each data type. Users can refer to this
catalog to identify the most suitable data sources based on their specific target areas and research
objectives.

Table 6: Catalog of data types for 3D city model generation.

Type Data sources Guidelines for selection

Building height Base: EUBUCCO [104],
OSM, Overture
Complementary: OB2.5DT
[26], UT-GLOBUS [22],
MSBF [105]

(1) Use EUBUCCO for EU countries; for other regions, employ OSM or
Overture as the base source.
(2) If the target area is covered by any complementary dataset (MSBF for the
USA, Europe, and Australia; OB2.5DT for Africa, South Asia, South-East Asia,
Latin America and the Caribbean; UT-GLOBUS for 1,200 global cities), use it
as the complementary source.

Land cover UW [115], OEMJ [114],
OSM, ESA [24]

(1) Use UW for U.S. cities and OEMJ for Japanese cities, where available.
(2) For all other regions, rely on OSM by default.
(3) If OSM coverage is insufficient, switch to ESA.

Canopy height META [23], ETH [124] Select either META or ETH according to the target areas and research objectives,
keeping in mind that META typically underestimates canopy height while ETH
tends to overestimate.

Terrain elevation USDEM [130], ENGDTM
[131], AUSDEM [132],
FRADEM [133], DeltaDTM
[129], FABDEM [25]

(1) For cities covered by high-resolution datasets (ENGDTM, USDEM,
AUSDEM, and FRADEM), use those data sources.
(2) For other regions, use FABDEM or DeltaDTM. Note that, in areas with dense
high-rise buildings, these data may include significant errors.
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4. The VoxCity package

In this section, we introduce ‘VoxCity’, an open-source Python package for open geospatial
data integration, grid-based 3D city model generation, and urban environment simulation. Figure 6
illustrates the framework of VoxCity. Users start the process by specifying the target area and
voxel size and selecting data sources from our catalog. The workflow consists of four main sub-
processes: (1) 3D city model generation, (2) simulation, (3) file export, and (4) visualization. In (1)
3D city model generation, VoxCity downloads building height, land cover, tree canopy height, and
terrain elevation data from the selected sources within the specified target area. It then voxelizes
all the downloaded data and integrates them into a semantic 3D city model. In (2) simulation, the
output models can be used directly to conduct urban environment simulations through VoxCity’s
built-in simulation functions. In (3) file export, VoxCity can export the output model in multiple
file formats that are compatible with external software. In (4) visualization, VoxCity offers 3D
visualization functionality for not only generated city models but also simulation results.

4.1. 3D city model generation

4.1.1. Download
VoxCity automatically downloads the required data within a target area through either file links

or APIs depending on selected data sources. Users can define the target area as a rectangular
region. Downloaded data are saved in users’ environments and utilized in subsequent processes.
Vector and raster data are saved as GeoJSON and GeoTIFF files, respectively. Users who need
these intermediate files can also use VoxCity solely as a downloader for various geospatial datasets,
similar to OSMnx [99], which often serves as a downloader for road networks from OSM.

4.1.2. Voxelization and integration
Downloaded data are then voxelized using voxel units through the following processes.
VoxCity first aggregates values using a two-dimensional horizontal grid defined by the voxel

size (in meters). For building height, tree canopy height, and land cover, each cell’s value is
determined by the dominant value within that cell. For instance, focusing on land cover, when a
cell includes multiple classes, the class that covers the largest area is assigned as the representative
value of the cell. In this process, the land cover class harmonization shown in Table 3 is applied,
enabling users to easily compare the generated 3D models across different data sources and select
the desirable sources. For terrain elevation, the representative value of a cell is calculated as the
average within the cell.

A voxel model is then generated for each data type by extruding the aggregated cell values.
For building height, tree canopy height, and terrain elevation, two-dimensional grids are extruded
corresponding to the value of each cell and its voxel size. For example, if a cell representing
building height has a value of 50 m and the voxel size is 5 m, it is extruded into 10 (=50/5) voxels
vertically. Tree and terrain voxels are generated using the same method. For trees, the canopy
height value includes a gap between the terrain surface and the bottom of the canopy. Tree voxels
occupy only the space between the top and bottom of the canopy, while void voxels fill the space
below the canopy. The height of this gap is determined by multiplying the canopy height by a trunk
height ratio, which can be adjusted to reflect different regions or tree species. For land cover, the
topmost (surface) terrain voxel in each cell of the 2D grid is replaced with a land cover voxel.

Finally, voxel models of buildings, trees, and terrain with land cover are integrated into a single
3D city model. In this integration process, building and tree models are placed on top of the land
cover voxels (the surface voxels of the terrain model).

In OSM, some buildings consist of multiple footprint polygons with detailed height information
for both the top and the bottom. Such footprints represent more complex building shapes than
simple extrusions based on terrain surfaces. For these buildings, our method uses both top and
bottom height values to fill building voxels only between the two heights, leaving voxels between
the terrain surface and the building’s bottom as void (see Figure 7-Singapore as an example).
Additionally, VoxCity generally does not support civil engineering structures such as bridges and
elevated highways, except for some rare cases where such objects are registered with height values
in OSM.
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Figure 6: Workflow of data processing in ‘VoxCity’ – from bringing together disparate urban data sources to conducting
complex multi-modal simulations – all in a single software package.

15



VoxCity’s 3D city models are structured as three-dimensional arrays, whose dimensions
correspond to the geospatial x, y, and z axes as shown in Figure B.13 in Appendix. Each cell
corresponds to a voxel, and its value represents an element type such as a building, tree, or water.
While some previous studies implemented octrees for voxel model structures to enhance efficiency
in data processing [36, 134], VoxCity does not currently use this approach. Incorporating octrees
could reduce memory usage and improve ray-tracing-based simulation performance; therefore, we
plan to implement this structure in future work.

4.1.3. Example outputs
Figure 7 shows example 3D city models generated by VoxCity. These include models of

Singapore, Tokyo, Paris, New York City, Rio de Janeiro, Abu Dhabi, Sydney, and Cape Town,
demonstrating VoxCity’s capability to generate 3D city models worldwide and in varied urban
morphologies. These outputs also illustrate VoxCity’s ability to represent building configurations
more complex than simple extrusions of building outlines. This is particularly evident in the
Singapore model, which features a rooftop park supported by three towers.

VoxCity’s outputs capture the morphological characteristics of each city by combining building
shapes and arrangements, land cover, tree canopies, and terrain elevations. Notable examples
include the radiating block arrangements and street networks around Arc de Triomphe in Paris;
dense skyscrapers surrounded by water in Lower Manhattan, New York City; tightly packed houses
on a mountainside in Rio de Janeiro; and sparse high-rise buildings set amid sandy terrain in
Abu Dhabi. Additionally, to further demonstrate VoxCity’s capability for diverse geographies
worldwide, we generated models for eight cities: Vancouver, San Francisco, Medellín, La Paz,
Barcelona, Nairobi, Mumbai, and Bangkok (Figure C.14 in Appendix).

To demonstrate the efficiency of our approach, we evaluated the time requirements for manual
and computational processing to generate 3D city models, as shown in Table E.8 in Appendix.
Manual processing includes specifying the target area and setting data sources, while computational
processing includes downloading the required data and generating the voxel city models. In our test
environment—equipped with an Intel Core i9-13900 processor and an internet connection with a
measured download speed of 180 Mbps—VoxCity required 90 seconds for manual and 40 seconds
for computational processing for the New York City model shown in Figure 7. Computational
processing times can vary substantially depending on the urban morphology and selected data
sources. For instance, generation of the Singapore model shown in Figure 7, which exhibits
lower building density than that of New York City, required a computational processing time of
25 seconds.

4.2. Simulation

VoxCity includes a built-in subpackage ‘simulator’ that calculates solar irradiance, view
indices, and landmark visibility in 3D city models. Combined with the ‘generator’ subpackage,
VoxCity provides a one-stop solution for everything from 3D city model preparations to urban
environment simulations, reducing the manual effort typically required to transfer data between
3D modeling software and specialized simulation tools. The following subsections detail
methodologies used for each simulation.

4.2.1. Solar radiation
A module, ‘solar’, provides functionality for calculating global irradiance at ground-level and

on building surfaces. Solar radiation is a critical factor influencing outdoor heat stress [135],
thermal comfort [136, 137], urban farming [138], photovoltaic power generation [139, 140], and
building energy consumption by HVAC and lighting [141, 142]. Consequently, it has profound
impacts on urban sustainability and the well-being of city dwellers—underscoring its importance
in urban and architectural planning. We employ a ray-tracing based calculation method for solar
irradiance introduced by Pružinec and Ďuračiová [143], Monsi and Saeki [144]. The method is
summarized in Appendix D. The ‘solar’ module offers two calculation options: (1) instantaneous
solar irradiance (Wm−2) at a specific timestamp and (2) cumulative solar irradiance (Whm−2) over
a specific period, such as a day, a month, or a year.
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Figure 7: Examples of output 3D city models from VoxCity. 3D rendering performed in MagicaVoxel. BH, TH, LC, and
TE represent building height, tree canopy height, land cover, and terrain elevation, respectively.

17



Figure 8: Example urban environment simulations conducted using 3D city models from VoxCity. (a, b) Solar irradiance.
(c) Green View Index, GVI. (d) Sky View Index, SVI. (e) Landmark Visibility. Panel (b) employed walking path networks
downloaded from OpenStreetMap. Basemap: © OpenStreetMap contributors,© CARTO.
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Figure 8a illustrates example results of ground-level cumulative solar irradiance for three
target areas: New York City, Paris, and Abu Dhabi. These simulations used the same
3D city models shown in Figure 7 and employed the nearest EPW files downloaded from
Climate.OneBuilding.Org. Each target area exhibits distinct spatial variations in solar irradiance,
reflecting differences in urban morphology, climate, and weather conditions. These results
demonstrate the potential of VoxCity’s simulation subpackage for evidence-based urban and
architectural design that accounts for local conditions.

Additionally, VoxCity provides a feature to aggregate grid-based simulation results along the
edges of road networks, as shown in Figure 8b. The functionality uses OSMnx to download road
networks from OSM, enabling various network analyses within simulated urban environments—
including not only solar irradiance but also view indices and landmark visibility, which are detailed
in Section 4.2.2.

4.2.2. View index
A module, ‘view’, provides functionality for conducting view index analyses, where the ratio

of specific object types—such as vegetation, sky, and buildings—visible from a given location is
quantitatively evaluated. The module calculates the view index by applying a ray-tracing technique
to 3D city models. Specifically, we implemented a line of sight evaluation method introduced by
Mor et al. [145] to voxel city models. Users can specify the target object type, the vertical angle of
view (i.e., the ranges in which rays are cast), and the total number of rays. The horizontal angle of
view is set to 360 degrees, assuming uniform visibility in all directions.

We demonstrated the calculations of the Green View Index (GVI) and Sky View Index (SVI)
using the module on 3D city models for Paris, New York City, and Abu Dhabi, as shown in
Figure 8c and d. For GVI, our method casts 600 rays per location, covering 60 degrees vertically.
Specifically, the vertical angles range from -30 to +30 degrees, with the horizontal direction defined
as 0 degrees. Rays are cast at six-degree intervals both horizontally and vertically, resulting in 60 ×
10 = 600 rays per location. In contrast, for SVI, areas below the horizon do not influence the results;
therefore, the vertical angle of view is set from 0 to +30 degrees. This configuration produces 300
rays per location. We employed the same 3D city models shown in Figure 7. The results reflect
the distinct urban morphological features of the target areas: New York City exhibits a notably low
SVI due to its dense high-rise buildings, whereas Abu Dhabi shows a relatively low GVI and high
SVI, aligning with its limited greenery and more sparse buildings.

The view module also provides functionality for evaluating the visibility of specified landmark
buildings from ground-level locations using a ray-tracing technique. Specifically, we implemented
the ground-level viewshed calculation introduced by Wróżyński et al. [146] for voxel city models.
This enables users to understand from which locations within a target area the landmark buildings
can be seen. Figure 8e shows example visibility maps. Landmarks play important roles in
pedestrians’ perception and wayfinding [147, 148], influencing visual comfort and walkability
[149, 150]. The access to the view of landmarks has been proved to add property value [151]. The
visibility simulations could support informed urban planning considering such effects of landmarks.

4.3. File export
VoxCity’s ‘exporter’ subpackage can save the generated 3D city model data in several file

formats to support downstream applications and data exchange. The available file formats include
INX for ENVI-met [152, 153], the Wavefront OBJ for 3D modeling software, the MagicaVoxel13

voxel model format (VOX), and the Pickle (PKL) for Python. ENVI-met is a widely used
microclimate simulation software. MagicaVoxel offers GPU-accelerated 3D rendering for voxel
models. PKL files enable model data transfer between different Python environments without any
format conversion. When using the PKL format, the data is directly saved as a three-dimensional
NumPy [154] array. For other formats, the data is first converted to each format’s specific data
structure. In the case of VOX, the 3D array from VoxCity is reformatted into the VOX structure,
including color palette information corresponding to voxel classes. The subsequent subsections
describe the export functionality for the INX and OBJ formats in more detail.

13https://ephtracy.github.io/index.html
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4.3.1. INX for ENVI-met
Building height and terrain elevation from VoxCity are directly converted to the INX format,

while canopy height and land cover data are translated into corresponding vegetation ID and
material ID in ENVI-met before being integrated into the INX format. Table F.9 in Appendix
summarizes mapping of voxel classes in VoxCity to ENVI-met material and vegetation IDs in this
study. Additionally, users can specify the trunk height ratio relative to total canopy height and
the leaf area density (LAD) of trees. These tree-specific settings are then exported separately as a
project database (EDB) file.

Figure 9 shows microclimate simulation examples using the widely-used ENVI-met code
(V5.7.1, ENVI-met Gmbh, Essen) in two characteristic sites, high-rise Al Zahiya district in
Abu Dhabi and low-rise residential in Greenbelt, MD (USA). Since ENVI-met is based on the
structured mesh (i.e., Cartesian coordinates), VoxCity can provide basic 3D geometries (Figures
9a and 9b) for the simulation. The calculation domains were 800 m × 800 m × 310 m for
Abu Dhabi, and 500 m × 500 m × 50 m for Greenbelt. They comprised inner areas with
buildings and trees with horizontally homogeneous grid spacing (4 m for Abu Dhabi and 2
m for Greenbelt here), which is off-the-shelf from VoxCity. Because perimeter margins are
necessary for ENVI-met simulation to avoid unphysical results (as detailed in their documentation:
https://envi-met.com/tutorials-plugins-faqs-helpful-info/), VoxCity provides a
function to remove perimeter buildings and trees. For vertical grid spacing, VoxCity provides
options that use the same size for the horizontal grid or set an arbitrary number of layers. Here, we
set 19 layers for the Greenbelt case and 50 for the Abu Dhabi case. One should note that before
running the simulation, ENVI-met automatically resizes the meshes within the five layers near the
ground to a finer resolution. We also note that ENVI-met V5.7.1 often predicts unphysical results
for complex terrains (as detailed on their website: http://www.envi-hq.com/), so we strongly
recommend VoxCity users not to obtain DEM when conducting ENVI-met simulation.

VoxCity automatically sets default values of the thermal properties of buildings, ground,
and trees by providing the INX file. Although overwriting the INX file, e.g., setting detailed
building surface materials, can give more accurate predictions, we show the results with the
default values here to verify their adequacy. For meteorological forcings, we used the 2004–2018
typical meteorological year data of the EnergyPlus Weather file (https://www.ladybug.tools/
epwmap/) and selected the nearest weather stations for each site.

Figures 9c–9f show thermal environments at 1.5 m height on typical summer afternoons (2:00
p.m.), namely the horizontal wind vectors and the universal thermal climate index (UTCI) (derived
from the air temperature, humidity, radiation, and wind speed) predicted by ENVI-met. In the Abu
Dhabi case, the inlet wind was the northwesterly sea breeze from the Persian Gulf. The speed was
relatively high above the roads and the open areas and reached 5 m/s at the maximum (Figure 9c),
probably because the city block pattern is along the direction of the inlet wind. However, the
inlet air temperature was 44°C, hotter than the human body, and therefore, as seen around point
1O in Figure 9e for example, the increase in wind speed rather increased UTCI by convective heat
transfer (see Fig. 7 of Bröde et al. [155]). Shading effects of buildings and trees on UTCI are
evident, and the difference between sunlit and shaded areas reached > 20 °C (Figure 9e). Weak
and complex diverged flows with lower air temperature and UTCI values are found in the leeward
of the buildings (e.g., around building 2O in Figures 9c and 9e and the southeast city block),
indicating cooler above-roof air moved to the ground level by the downdrafts. In the Greenbelt
case, the wind speed was generally lower than the inlet value (1.5 m/s) due to the momentum sink
by trees (Figure 9d). The UTCI distribution seems to correspond simply to the shading pattern,
and the contrast between roads and under-tree areas is evident (Figure 9f). We verified the validity
of various parametric scenarios in Abu Dhabi, Greenbelt, and a few other sites. The calculations
were successfully completed in all cases, while physically unrealistic results were obtained when,
as mentioned above, OSM’s LULC data included water surfaces or when using DEM data. Note
that the validation results and limitations of the recent ENVI-met code (version 4 or above) are
explained in the literature [156, 157, 158].
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Figure 9: Examples of ENVI-met microclimate simulation in Abu Dhabi and Greenbelt. (a, b) 3D models and land-use
land-cover maps obtained from VoxCity. (c, d) Horizontal wind vectors and air temperature, and (e, f) universal thermal
climate index (UTCI) distributions at the 1.5-m height on typical summer afternoons.

4.3.2. OBJ for 3D modeling and rendering
The 3D array from VoxCity is converted into surface polygons of the voxel model and then

formatted according to the OBJ structure. Colors corresponding to voxel classes are assigned to
polygons, and the color palettes are saved as Material Template Library (MTL) files. This allows
3D modeling software to automatically apply the assigned surface colors when loading OBJ files
and helps preserve semantic information that is not native to OBJ [159]. Simulation results from
VoxCity’s internal functions can also be exported as OBJ and MTL files.

Figure 10 shows examples of OBJ outputs rendered in Rhino 7, illustrating VoxCity’s
capabilities to produce diverse visualization styles for different purposes. The renderings for
Singapore and New York City aim to provide photo-realistic visualization of large-scale urban
morphologies. Those for Tokyo and Amsterdam employ vibrant colors for specific urban objects,
vegetation, and water, highlighting distinct urban morphological features. The example of Abu
Dhabi demonstrates how urban environment simulation results can be integrated with 3D city
models by exporting simulation data as OBJ files. This makes it easier for viewers to understand
the relationship between simulated environments and the underlying urban morphology. Although
VoxCity primarily focuses on urban areas, it can also be used to visualize natural environments. In
the Matterhorn example, VoxCity accurately captures the mountain’s sharp peak and ice-covered
terrain.

4.4. Visualization

VoxCity provides a built-in function for 3D visualization. Figure 11 shows example outputs
produced by this functionality. Users can visualize generated 3D city models as well as simulation
results. For instance, Figure 11a, b, c, and d indicate the yearly cumulative global irradiance
on building surfaces, the ground-level sky view index, the ground-level green view index, and the
ground-level landmark visibility, respectively. Users can specify projection types from two options:
‘orthographic’ and ‘perspective’, adjust the zoom factor, and change the camera position and angle.

5. Limitations and future directions

5.1. Support and integration of existing semantic 3D city models

Considering the aspiring role of VoxCity in 3D GIS, an integration of advanced 3D data models
(e.g., CityGML and CityJSON) could facilitate its broader interdisciplinary adoption. In this
section, we will discuss such integration in two aspects — (1) incorporating semantic 3D models
as input data sources; and (2) extending export outputs to standardized 3D data formats.
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Figure 10: Examples of 3D renderings created in Rhino using output 3D city models from VoxCity.
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Figure 11: Example outputs for New York City produced by VoxCity’s built-in 3D visualization function.

First, integrating 3D models has the potential to enrich geospatial information embedded within
VoxCity, contributing to more comprehensive and tailored research. VoxCity currently generates
3D city models from a series of openly available 2D and 2.5D datasets, which can result in a lack
of semantic and geometric details especially for research at block or building scale. Integration
of publicly available 3D city models as supplementary input may be beneficial for such cases.
For example, 3D datasets, such as 3DBAG in the Netherlands [160, 161, 87] offer higher levels
of detail achieved through advanced acquisition techniques (e.g., high-resolution airborne laser
scanning) and state-of-the-art reconstruction algorithms. Such 3D datasets can address current
limitations in semantics and geometry, particularly in the representation of building forms (e.g.,
roof-related semantics) and vegetation (e.g., classification) [162]. Nevertheless, the integration of
detailed semantic 3D models introduces certain trade-offs in the future development of VoxCity.
Large and complex 3D datasets often entail substantial computational demands, which may hinder
overall efficiency. Future research needs to evaluate the balance between the benefits of enhanced
semantic detail and the associated technical costs when scaling to an extensive city scale.

Second, in the current implementation, VoxCity provides four export formats (i.e., PKL, VOX,
INX, and OBJ) to interface with downstream applications. Fostering data standardization and
interoperability, in the future, we plan to implement additional export options (e.g., CityGML
or CityJSON). For example, exporting 3D city models in standardized formats is of value for
use cases that involve data exchange and sharing with practitioners or systems, which require
compliance with established schemas. By offering CityGML or CityJSON as export options,
VoxCity can enhance compatibility and ensure broader usability across various domains. Further,
VoxCity incorporates semantic information during the generation process; therefore, preserving
these attributes through standardized formats is important. Formats such as CityJSON are ideal for
this purpose, providing a compact, structured, and easy-to-use approach to storing and managing
semantic data [160]. Therefore, such properties can be retained and effectively communicated for
downstream practices. For example, a recent study by Lei et al. [163] extended the CityJSON
schema to accommodate human perception of architectural appearance in 3D buildings, enabling
potential use cases. In this work, VoxCity features its novelty in automatic generation and tangible
usability. Enabling standardized export can strengthen the role of VoxCity as a versatile tool,
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Figure 12: 3D city model of a target area in Houston, United States, from a trial incorporating building surface materials
and window ratio information extracted from street view imagery. Image source: Mapillary. 3D rendering performed in
Rhino.

supporting the consistent and interoperable development of 3D city models. However, challenges
should be considered, such as the complexity of translating a voxel-based representation into a
hierarchical structure, as well as computational and storage costs compared to current formats
(e.g., PKL or OBJ).

5.2. Integration of building surface material information

Integrating building surface attributes, such as surface materials and window-to-wall ratio
(WWR), into VoxCity is another promising direction for the next iteration of the package.
VoxCity currently does not support the integration of building surface attributes, primarily due
to limitations in data sources. To the best of our knowledge, no global open datasets currently
provide surface attributes for individual buildings. While some buildings in OSM include material
information, the proportion is relatively small [107]. However, building materials and WWR
can significantly influence the surrounding microclimate and building energy consumption in
various ways, including heat transfer, air leakage or ventilation, and offsetting daylighting demand
[164, 165, 166]. This highlights the importance of incorporating material and WWR information
in 3D city model generation for detailed urban environment simulations. A potential approach
to address this gap is to use computer vision techniques on street view imagery to infer facade
features.

In light of this, we conducted a trial to incorporate (1) building surface materials and (2) WWR
information into VoxCity’s 3D city model generation. Figure 12 provides an overview of the
process. First, street view images were obtained from Mapillary for a target area in Houston, United
States. OpenFACADES pipeline [167] was then employed to geolocate and detect buildings within
the street view images, assigning them to their corresponding building footprints. Building on
previous facade classification studies [168, 169, 170], we applied fine-tuned models to categorize
the building materials depicted in these images [171, 172], with each footprint linked to multiple
images. For WWR, window pixels were identified using the Grounded Segment Anything [173],
and the percentage of window pixels within the building walls was calculated. Based on the inferred
materials and WWR, we assigned categorical values to building voxels (e.g., 10 for glass, 11 for
concrete, 12 for brick, and 13 for wood).
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3D city models with detailed building material attributes can improve the accuracy of these
simulations and expand their range of potential applications. Consequently, we plan to develop an
additional subpackage that provides this functionality, after refining the methods and conducting a
thorough validation.

5.3. Data availability and functionality constraints

In Section 4, we have demonstrated VoxCity’s capability to generate 3D models of a variety of
cities worldwide. However, we acknowledge that data availability remains a critical challenge and
VoxCity does not incorporate all available data sources. Consequently, users may find it challenging
to produce accurate models for regions beyond its current scope. Notwithstanding, comprehensive
tools such as VoxCity play a crucial role in highlighting where data gaps remain, thereby supporting
the development of targeted use cases. We are further addressing this challenge by continuously
updating VoxCity and expanding the range of datasets it supports. Meanwhile, to broaden the
utilization of building data, efforts to combine individual local datasets into comprehensive global
collections—such as EUBUCCO [104]—should be further encouraged. Additionally, we have
provided only qualitative comparisons of data sources in Section 3. To help users select the best
data source options for their target areas, future work will conduct comparative experiments that
provide quantitative comparisons of data sources in coverage and completeness.

Our method currently considers only tree canopy height and does not account for variations
in shape and density, which can differ by species, season, and health condition. For an accurate
assessment of urban environments, it is crucial to include these factors. However, such detailed
information is often unavailable in most cities, although some have created tree inventories
containing data on individual trees. We plan to add functionality to parse such inventories and
incorporate them into model generation. As mentioned in Section 3.3, no globally comprehensive
tree inventory datasets or standardized data formats currently exist. Both the integration of local
inventories into a global repository and the development of standardized data structures must be
pursued in parallel.

VoxCity currently does not support the ability to edit data source files. For example, users
cannot edit the arrangement of buildings, trees, and land cover from the original datasets.
Therefore, users cannot conduct simulations to compare different design scenarios. To further
enhance usability in urban studies and urban and architectural planning practices, future work
will address this limitation by developing, for instance, a user interface to interactively edit data
source files and voxel city models. Additionally, the current version does not support interactive
visualization, multi-dimensional data overlays, or integration with GIS platforms. These limitations
represent important areas for future development of VoxCity.

6. Conclusions

Urban environment simulations using 3D city models are powerful instruments for informed
urban planning and policymaking, particularly for assessing environmental benefits and risks that
affect the health and well-being of city dwellers. However, the intensive manual effort required to
prepare 3D city models, complicated application-specific data requirements, and fragmented data
availability often hinder their broader utilization. To address this, we developed ‘VoxCity’, a one-
stop Python package for open geospatial data integration, 3D city model generation, and urban
environment simulation. Focusing on four key data types— building height, tree canopy height,
land cover, and terrain elevation—we reviewed existing open datasets and compiled them into a
catalog. VoxCity automatically downloads these datasets, voxelizes buildings, trees, land cover,
and terrain, and creates an integrated voxel-based city model ready for a variety of environmental
simulations. Additionally, VoxCity enables users to perform urban environment simulations
through its built-in simulation subpackage and to export the generated 3D models in various file
formats compatible with external software. The key contributions of this holistic and integrated
work are as follows.

1. This paper presents a review of globally available geospatial data relevant to 3D city
models—including building height, tree canopy height, land cover, and terrain elevation.
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This review not only helps VoxCity users select appropriate datasets but also provides readers
with an overview of such datasets.

2. VoxCity provides a streamlined and automatic method to prepare 3D city models. This is
particularly advantageous in cities without openly available 3D city models. Additionally,
VoxCity’s capability to generate ready-to-use models for urban environment simulations
benefits even those cities with existing 3D city models.

3. VoxCity can integrate four geospatial data types — building height, tree canopy height, land
cover, and terrain elevation — to generate semantic 3D city models. Users can conduct
simulations that account for buildings, vegetation, water bodies, and terrain geometry, all of
which significantly affect urban environments.

4. VoxCity’s built-in simulation and visualization functions provide a comprehensive, end-to-
end solution—from 3D city model generation to running urban environment simulations
including solar irradiance and visibility analyses and visualizing the simulation results—
thereby significantly reducing the time and effort required for such tasks.

5. By leveraging data from OSM, which is continuously updated by volunteers, VoxCity
ensures its 3D city models remain relatively current. Many open 3D city models are not
continuously updated and can quickly become obsolete; however, VoxCity mitigates this
limitation by providing a more up-to-date representation of the urban form.

6. VoxCity can also serve as a comprehensive data downloader, sourcing information from
various providers for users who require only intermediate data.
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Appendix A. Environmental simulations and urban elements

Table A.7: Assessment categories for environmental simulation and their corresponding urban elements

Assessment categories References Urban elements

Thermal comfort / heat
stress

Chen et al. [41], Yuan et al. [2], Lindberg
et al. [1], Kong et al. [42], Li and Wang [43],
Galal et al. [54], Zhang et al. [55], Hong and
Lin [56], Wu et al. [57], Morakinyo and Lam
[58], Li et al. [59], Wang et al. [60], Robitu
et al. [66], Du et al. [67], Imam Syafii et al.
[68]

Buildings, trees, land cover,
terrain elevation

Sunlight exposure /

photovoltaic potential
Grant et al. [53], Fath et al. [174] Buildings, trees

Wind comfort / wind
energy potential / wind
pressure

Blocken et al. [49], Mou et al. [51], Hong
and Lin [56]

Buildings, trees

Building energy
performance

Forouzandeh [44], Gros et al. [6], Bouyer
et al. [7]

Buildings, land cover (low
vegetation, etc.)

Air quality Kwak et al. [48] Buildings, terrain elevation,
air pollutant emissions

Visual comfort / green
view index / sky view
factor

Oh [5], Yi and Kim [72], Yu et al. [71], Labib
et al. [74], Fujiwara et al. [73]

Buildings, trees, land cover,
terrain elevation

Appendix B. Data structure of voxel city models

Figure B.13: 3-dimensional array representing semantic voxel city models.
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Appendix C. 3D models for diverse geographies worldwide

Figure C.14: Additional examples of output 3D city models from VoxCity. The 3D rendering was performed in VoxCity’s
visualization module. BH, TH, LC, and TE represent building height, tree canopy height, land cover, and terrain elevation,
respectively.
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Appendix D. Calculation of solar irradiance

We implemented a calculation combining the methods by Pružinec and Ďuračiová [143] and
Monsi and Saeki [144]. Pružinec and Ďuračiová [143] introduced a ray-tracing and voxel-based
method, while Monsi and Saeki [144] introduced a method to calculate transmittance of trees
from leaf area density (LAD). For instantaneous values, the module first calculates solar azimuth
and elevation angles using the location (longitude and latitude) of the target area and the target
timestamp, employing a Python package ‘astral’14. Direct and diffuse irradiance are then calculated
using a ray-tracing technique, incorporating the computed sun position as well as direct normal
and diffuse horizontal irradiance that is not affected by shading. In the ray-tracing process, a
transmittance determined by the Beer-Lambert law (Equation D.1) is incorporated when rays pass
through tree voxels:

τ = e−K·LAD·l (Monsi and Saeki [144]) (D.1)

where τ is the transmittance of solar radiation through tree canopies, e is the base of the natural
logarithm, K is the extinction coefficient, LAD represents the leaf area density (m2 m−3), and l is
the path length through tree voxels (m). In this paper, we employed K = 0.5, and LAD = 1.0 m2

m−3.
For cumulative values, the module calculates instantaneous irradiance at each timestamp from

the start to the end of a specified period and then sums the results. To incorporate locally relevant
climate conditions (including direct normal and diffuse horizontal irradiance), the module can use
EnergyPlus Weather (EPW) files. Users may supply their own EPW files; otherwise, the module
can automatically download the nearest EPW file from Climate.OneBuilding.Org 15.

Appendix E. Time requirements for 3D city model generation and simulations

Table E.8: Time requirements for 3D city model generation and simulations using VoxCity for an area in New York City.
The workflow includes both manual user inputs (specifying parameters, target areas, etc.) and automated computational
processes (data downloading, ray-tracing calculations, etc.). The target area, data sources, and simulation settings are the
same as those in Figures 7 and 8. Processing was performed on our system with an Intel Core i9-13900 processor and an
internet connection with a measured download speed of 180 Mbps.

Process Type Breakdown Time required

Model generation Manual Specifying target area, setting data sources
and parameters

90 sec

Computational Downloading data sources, generating a
voxel city model

40 sec

Solar irradiance
simulation

Manual Setting target time range 30 sec

Computational Downloading the nearest weather file, ray-
tracing calculation (for 8760 time steps)

50 sec

Green view index
calculation

Manual - 0 sec

Computational Ray-tracing calculation 1 sec

Landmark visibility
analysis

Manual Specifying landmark buildings 30 sec

Computational Ray-tracing calculation 1 sec

14https://github.com/sffjunkie/astral
15https://climate.onebuilding.org/
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Appendix F. ENVI-met Material Mapping and Parameters

Table F.9: Mapping of voxel classes in VoxCity to ENVI-met material and vegetation IDs with their basic properties.
The model uses a layered structure where vegetation and building objects are placed on top of ground/soil profiles (e.g.,
rangeland = grass on sandy loam; wet land = grass on water; building = wall on sandy loam).

Voxel classes in
VoxCity

Material
type

ENVI-met
material/
vegetation ID

Basic properties

Bareland, Rangeland,
Shrub, Moss and
lichen, Agriculture
land, Tree, Snow and
ice, Building, No
Data

Ground/soil 000000 (default
sandy loam)

Albedo: 0.20, Emissivity: 0.98,
Roughness: 0.015 m, Sandy loam soil
profile (19 layers)

Wet land,
Mangroves, Water

Ground/soil 0200WW (deep
water)

Albedo: 0.00, Emissivity: 0.96,
Roughness: 0.01 m, Water mixing
coeff: 0.001, Turbidity: 2.1

Road Ground/soil 0200ST (asphalt
road)

Albedo: 0.12, Emissivity: 0.90,
Roughness: 0.01 m, 9 layers asphalt
over 10 layers sandy loam

Rangeland, Moss and
lichen, Agriculture
land, Wet land

Vegetation 0200XX (grass 25
cm aver. dense)

Height: 0.25 m, Albedo: 0.20,
Emissivity: 0.97, Transmittance: 0.30,
rs_min: 200 s/m, LAD: uniform 0.30
m²/m³, Root depth: 0.20 m

Shrub Vegetation 0200H1 (hedge
dense, 1 m)

Height: 1.00 m, Albedo: 0.20,
Emissivity: 0.97, Transmittance: 0.30,
rs_min: 400 s/m, LAD: uniform 1.00
m²/m³, Root depth: 1.00 m

Tree Vegetation - (user-defined 3D
plants by canopy
height)

Albedo: 0.18, Transmittance: 0.30,
rs_min: 0.0 s/m, LAD: 1.0 m−1, Wood
density: 690 kg/m³

Building Building
wall

000000 (default
wall – moderate
insulation)

3-layer (plaster/insulation/concrete),
Total thickness: 0.31 m, Roughness:
0.02 m, Can be greened
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