
Coverage and bias of street view imagery in mapping the 
urban environment

Zicheng Fan a, Chen-Chieh Feng b, Filip Biljecki a,c,*

a Department of Architecture, National University of Singapore, Singapore
b Department of Geography, National University of Singapore, Singapore
c Department of Real Estate, National University of Singapore, Singapore

A R T I C L E  I N F O

Keywords:
Spatial data quality
Isovist analysis
Urban data infrastructure
Urban informatics
OpenStreetMap
Building footprint

A B S T R A C T

Street View Imagery (SVI) has emerged as a valuable data form in urban studies, enabling new ways to map and 
sense urban environments. However, fundamental concerns regarding the representativeness, quality, and reli-
ability of SVI remain underexplored, e.g. to what extent can cities be captured by such data and do data gaps 
result in bias. This research, positioned at the intersection of spatial data quality and urban analytics, addresses 
these concerns by proposing a novel and effective method to estimate SVI’s element-level coverage in the urban 
environment. The method integrates the positional relationships between SVI and target elements, as well as the 
impact of physical obstructions. Expanding the domain of data quality to SVI, we introduce an indicator system 
that evaluates the extent of coverage, focusing on the completeness and frequency dimensions. Taking London as 
a case study, three experiments are conducted to identify potential biases in SVI’s ability to cover and represent 
urban environmental elements, using building facades as an example. It is found that despite their high avail-
ability along urban road networks, Google Street View covers only 62.4 % of buildings in the case study area. The 
average facade coverage per building is 12.4 %. SVI tends to over-represent non-residential buildings, thus 
possibly resulting in biased analyses, and its coverage of environmental elements is position-dependent. The 
research also highlights the variability of SVI coverage under different data acquisition practices and proposes an 
optimal sampling interval range of 50–60 m for SVI collection. The findings suggest that while SVI offers valuable 
insights, it is no panacea – its application in urban research requires careful consideration of data coverage and 
element-level representativeness to ensure reliable results.

1. Introduction

Street View Imagery (SVI) has gained a significant role in urban 
studies and in spatial data infrastructure as a new means to map and 
sense urban environments (Biljecki & Ito, 2021; Ibrahim et al., 2020; 
Kang et al., 2020; Zhang et al., 2024). Research efforts have been pre-
dominantly focused on the development of use cases, while fundamental 
concerns of data quality and reliability of this emerging form of data 
have not been given sufficient attention in international scientific 
literature. The lack of understanding of questions such as reach and 
coverage of SVI data may have adverse effects on use cases and down-
stream analyses. For example, SVI has been used intensively for mapping 
street greenery (Liu, Jiang, et al., 2023; Zhu et al., 2023) and buildings 
(Ramalingam & Kumar, 2025; Zhong et al., 2021), assessing walking 
environment (He & He, 2023; Liu, Wang, et al., 2023) and microclimate 

(Fujiwara et al., 2024), and understanding human perception at the 
urban scale (Ramírez et al., 2021; Verma et al., 2020; Wang et al., 2022; 
Wu et al., 2023), but not much is known about the representativeness 
and suitability of the data for the corresponding road and sidewalk 
scenarios, or for the investigated neighborhoods and local zones, e.g. it is 
not known what is the reach of data and to what extent can we sense an 
urban aspect using SVI, and whether the (incomplete) coverage is 
representative or biased.

This challenge is exacerbated by the gap that traditional spatial data 
quality metrics, such as accuracy and resolution, are primarily designed 
for remote sensing imagery or geometric data, which do not fully apply 
to SVI (Hou & Biljecki, 2022). While some studies employ completeness 
to evaluate the integrity of SVI in geospatial coverage (Hou & Biljecki, 
2022; Juhász & Hochmair, 2016; Kim & Jang, 2023; Quinn & Alvarez 
León, 2019), they predominantly focus on the spatial and temporal 
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availability of imagery, limiting their analysis to their coordinates and 
timestamps. However, there are other unique metadata and properties 
that set SVI apart from traditional urban data forms, leading to potential 
variability in its application. For example, the impact of SVI camera 
parameters (e.g., heading, Field of View (FOV), image formats), and 
collection intervals are frequently neglected in common SVI-based 
research practices (Biljecki, Zhao, et al., 2023; Kim et al., 2021). 
These metadata shape the potential of SVI to map specific street ele-
ments horizontally in urban environments, which are crucial for SVI as a 
proxy for human-centered sensing and perception. To address some of 
these limitations, Hou and Biljecki (2022) propose a comprehensive 
framework to evaluate SVI data quality, primarily focusing on image 
quality, metadata availability and accuracy, and spatial and temporal 
aspects. The framework promotes SVI metadata and improves the 
standardization in SVI collection and utilization, especially for vol-
unteered street view imagery (VSVI), which are subject to heteroge-
neous acquisition practices (Danish et al., 2025; Helbich et al., 2024; 
Hou & Biljecki, 2022). However, the framework is tightly constrained to 
quality considerations, with limited exploration of how metadata prac-
tically impacts SVI’s capability to represent environmental information.

Even with high quality of imagery, homogeneous acquisition pro-
tocols employed by commercial providers, extensive availability, and 
proper metadata control, SVI does not necessarily guarantee reliable 
representation of the urban environment. One major limitation is that 
SVI is largely constrained to roads. It is reported that SVI has dimin-
ishing reach from public streets to the interior roads of blocks or 
neighborhoods (Biljecki & Ito, 2021; Kang et al., 2020). Moreover, the 
complexity of real-world objects and their layouts, as captured by SVI, 
can introduce noise that impacts the reliability of this data in covering 
specific environmental elements. For example, similarly as how vege-
tation and clouds can obstruct the observation of ground-level objects in 
remote sensing imagery (Hosseini et al., 2023), elements such as trees 
and vehicles may obstruct street-level mapping of urban elements such 
as building facades (Novack et al., 2020). Their interplay is also 
important — buildings, while often the main focus of use cases, can also 
act as unwanted obstacles to other objects (Raghu et al., 2023; Yan & 
Huang, 2022). In densely built environments with congested layouts, 
such mutual obstructions are further amplified, which hinders SVI from 
providing complete and extensive coverage of environmental elements. 
Efforts to address these challenges include the use of generative models 
to inpaint obstructed SVI images, such as removing trees, street furniture 
from building facades (Hu et al., 2023; Yu et al., 2023). However, the 
systematic effects of these obstructions on urban sensing using SVI 
remain untouched. As a result, the complexity of urban environments 
should be considered another critical concern.

In spite of the importance, there is a notable absence of effective 
methodology and set of metrics to assess the SVI ’s representativeness of 
environmental information, not just relying on a general coverage 
analysis inferred from SVI locations but also by diving into element-level 
coverage. The assessment should examine the discrepancies and biases 
between SVI covered element information to its real-world distribution, 
and address the uncertainty introduced by different SVI metadata, their 
practical usage, and the complexity of urban environment. Some exist-
ing studies only explore the stability and sensitivity of SVI in proxying 
environmental elements (e.g. building, sky, and greenery), and under 
varying metadata settings such as different image formats and projec-
tion methods (Biljecki, Zhao, et al., 2023), different image collection 
intervals (Kim & Jang, 2023), from pedestrian and vehicle perspectives 
and different directions (Ki et al., 2023). However, whether stable or 
not, the degree to which SVI-based environmental measurement corre-
spond to actual environmental elements is still undetermined. This lack 
of knowledge suggests a need for further and more surgical research that 
departs from the general SVI data quality studies or sensitivity research, 
to understand the extent and limitations of SVI in providing a compre-
hensive view of urban environments.

With the above elaborated gaps and research ideas, the main 

research questions we seek to answer in this paper are:
Q1. How can we quantitatively estimate and describe the element- 

level coverage of SVI on urban environment?
Q2. Are there typical biases or discrepancies in SVI’s representation 

of the urban environment when analyzed through the element-level 
perspectives?

To address the questions, the research proposes a novel workflow to 
estimate SVI’s coverage on elements in urban environment. The work-
flow integrates both the positional relationships between SVI and the 
target element, and the obstructions from environmental objects and 
settings into consideration, applying isovist analysis and semantic seg-
mentation methods. Moreover, an accompanying indicator system is 
developed to evaluate and describe the coverage extent. Key consider-
ations include the degree to which total street elements in a city can be 
captured in SVI, and whether certain instances in the element are 
repeatedly covered while others are frequently left out of sight. Taking 
the central area in the Greater London as the case study area, the 
research is further structured around three experiments to identify po-
tential bias of SVI in covering and representing environment informa-
tion. Urban building facade is selected as the example element for these 
experiments. In Experiment 1, we examine the distribution character-
istics of building information captured by SVI and compare it with the 
initial distribution based on building footprint data. Experiment 2 fo-
cuses on SVI coverage at the aggregated level, comparing the proposed 
element-level coverage estimates with traditional coverage estimates 
that rely on spatial distribution. In Experiment 3, we explore the impact 
of different SVI collection intervals, an important aspect of SVI meta-
data, on the variability of element-level SVI coverage. Through the ex-
periments above, we justify our element-level SVI coverage estimation 
workflow and metrics, and offer useful suggestions and reference in 
improving the reliability of further SVI-based urban research.

2. Background and related work

2.1. Application and concerns of SVI in mapping urban environment 
elements

Thanks to the rapid advancements in deep learning, particularly in 
visual tasks such as image classification, semantic segmentation, and 
object detection, Street View Imagery (SVI) data has been widely 
applied in urban science. By combining SVI with deep learning, re-
searchers have been able to map and classify urban elements such as 
buildings, roads, and greenery on a large scale, generating new geo-
spatial data or enhancing existing datasets (Biljecki & Ito, 2021; Sei-
ferling et al., 2017). SVI also serves as a visual proxy for investigating 
socio-economic attributes and human perceptions of specific neighbor-
hoods or urban spaces (Fan et al., 2023; He & Li, 2021; Kang et al., 
2020). Table A.1 summarizes recent studies that use SVI to map and 
sense typical environmental elements.

The considerable quantity and the extensive distribution of SVI, 
coupled with scalable machine learning models, are the prominent 
reasons SVI has been a popular urban data source for city-scale analyses 
(Biljecki & Ito, 2021; Kang et al., 2020). Nevertheless, existing research 
falls short in articulating the specific extent of SVI’s representativeness. 
Specifically, in terms of mapping urban environment elements such as 
building and greenery, it is questionable to which degree SVI can reach 
all the corresponding elements compared to their nature of existence. 
For perception research relying SVI as visual proxy, similar concerns 
raise about whether the SVI captured information, shares a similar dis-
tribution with the information represented in total investigated sce-
narios, or in the selected regions or neighborhoods. Acknowledging the 
potential limitations, models trained on SVI for mapping environmental 
elements or evaluating spatial attributes are often presented as an initial 
step or baseline for a broader research goal (Raghu et al., 2023; Ram-
alingam & Kumar, 2023; Yan & Huang, 2022). Fully achieving the goal 
requires addressing the uncertainty in SVI’s ability to systematically 
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represent the urban environment.

2.2. Sources of uncertainty in SVI application

To better understand the limitations of SVI, the section identifies 
three typical sources of uncertainty reported in previous research, 
namely SVI data availability and quality, common practices in SVI uti-
lization, and complexity in real-world environment.

2.2.1. SVI data quality: availability, image quality, and others
SVI data quality problems can be regarded as an inherent source of 

uncertainties for SVI in representing urban environment. Among them, 
the data availability have received more attention, and there are uneven 
availability distribution of SVI images and services across various 
geographic scales. Notably, a significant number of cities worldwide still 
lack SVI services. Cities in Europe and North America enjoy broader SVI 
coverage, whereas economically underdeveloped regions in Latin 
America and Africa experience sparse and limited distribution 
(Bendixen et al., 2023; Hou & Biljecki, 2022; Quinn & Alvarez León, 
2019). Moreover, there is spatial heterogeneity of SVI collection within 
cities where SVI services are available. For example, streets in areas 
characterized by high traffic volumes, dense populations, or wealthier 
demographics are more likely to be imaged (Fry et al., 2020). 
Conversely, smaller towns and rural areas are often overlooked 
(Szczepańska & Pietrzyk, 2020). Additionally, image availability in 
informal urban sectors can be compromised by the absence of accessible 
roads (Chen et al., 2022; He & Li, 2021), which results in the structured 
missingness problem (Mitra et al., 2024). In their review papers, Kang 
et al. (2020) and Biljecki and Ito (2021) point out that SVI is predomi-
nantly collected along streets, making it challenging to analyze varia-
tions within neighborhood built environments, potentially leading to 
structural issues in the completeness of information.

The distribution of SVI availability also varies among different ser-
vice providers. Google Street View often employs an all-or-nothing 
approach to collecting SVI (Quinn & Alvarez León, 2019), and achieves a 
more complete coverage on road network for cities where the service is 
available. In contrast,crowdsourcing platforms such as Mapillary, which 
rely on user contributions, lag behind commercial services in terms of 
the number of globally available cities and the completeness of road 
coverage (Biljecki & Ito, 2021; Wang et al., 2024). Nevertheless, Zheng 
and Amemiya (2024) found that as cumulative image contributions 
along streets increase, the spatial density and viewing angle coverage of 
VSVI improve significantly. Additionally, the temporal continuity of SVI 
availability in same or nearby geo-locations is a concern for both com-
mercial and crowdsourced sources (Hou & Biljecki, 2022; Kim & Jang, 
2023). There are series of method for measuring spatial and temporal 
availability of SVI data. For Google Street View, a typical method for 
assessing availability is to extract sampling points randomly or in a 
standardized way based on the road network in specific urban areas, 
calculating the proportion of these sampling points that have valid SVI 
in the vicinity (Fry et al., 2020; Kim & Jang, 2023; Smith et al., 2021). 
For crowdsourced data such as Mapillary or KartaView, besides the 
method above, the availability of SVI can also be measured by the 
proportion of road lengths covered by continuous SVI sequences to the 
total length of the road network (Hou & Biljecki, 2022; Mahabir et al., 
2020). Spatial coordinates and timestamps in SVI metadata play a 
crucial role in these assessment methods. As this paper will demonstrate, 
such methods may be useful but simplistic, so they may not paint a 
complete picture of the coverage of SVI, especially in the context of use 
cases. For example, it is difficult to tell from such metrics what is the 
percentage of buildings that can be mapped from SVI.

Beyond general data availability problems, SVI also suffers from 
image quality problems, such as blurriness, and variable lighting and 
weather conditions (Rui & Cheng, 2023; Yuan et al., 2023; Zou & Wang, 
2022). Low-quality and defective images may hinder the performance of 
computer vision models (Vo et al., 2023). The missing or inaccuracy of 

SVI metadata, such as GPS coordinates, timestamps, and exterior 
orientation parameters can also limit the usability of SVI in reflecting 
environmental information (Liang et al., 2017; Lumnitz et al., 2021). 
Given the situation, Hou and Biljecki (2022) first proposed a compre-
hensive framework to assess SVI quality problems beyond availability. 
The quality issues are conceptualized into 48 elements across 7 cate-
gories, namely image quality, metadata availability and accuracy, 
spatial quality, temporal quality, logical consistency, redundancy, and 
privacy. The relevant evaluation system and methods have been used to 
create an open global street view dataset, with a focus on enhancing 
metadata in existing crowdsourced street view data sources (Hou et al., 
2024).

2.2.2. Common practices in SVI utilization
Beyond data availability and quality, the way researchers utilize SVI 

data introduces another layer of uncertainty. As a common practice, 
many studies retrieve SVI by sampling points at regular intervals along 
road networks, selecting the nearest images for analysis. This approach 
primarily aims to mitigate potential spatial unevenness in SVI 
distribution.

On the one hand, the road networks used for sampling, often based 
on OpenStreetMap (OSM), may have limitations in terms of timeliness 
and completeness (Sánchez & Labib, 2024). In underdeveloped areas or 
regions with policy restrictions, the coverage may be even less 
comprehensive. This issue can be amplified by SVI’s focus on main 
streets, often neglecting pedestrian paths or internal neighborhood 
spaces (Biljecki & Ito, 2021; Kang et al., 2020). Given the situation, 
research focused on mapping trees and plants usually restricts the 
mapped targets to those located along the street (Liang, Jiang, et al., 
2024; Lumnitz et al., 2021). However, for studies primarily concerned 
with mapping buildings, the spatial boundaries of the targeted objects 
are often vaguely defined (Aravena Pelizari et al., 2021; Zhou et al., 
2023).

On the other hand, there is a lack of sufficient evidence to determine 
the optimal interval for SVI sampling. Smaller intervals may introduce 
redundancy, which is advantageous for mapping environmental ele-
ments as it ensures the capture of useful information and prevents data 
gaps (Liang, Jiang, et al., 2024). However, in studies focused on spatial 
perception at the neighborhood or regional level, overly dense intervals 
could result in the repeated capture and overemphasizing of certain 
environmental element in the overall captured information, leading to a 
biased representation. Kim et al. (2021) systematically examined how 
different sampling intervals affect the SVI-based measurement of 
various street view elements, finding significant fluctuations across in-
tervals. However, their focus was more on the stability of these mea-
surements rather than on how accurately SVI reflects the real 
environment.

Beyond the image sampling methods and intervals, researchers also 
consider the impact from other parameter selections and practices on 
SVI utilization. Specifically, these studies have compared different SVI 
orientations (Kim et al., 2021), different collection positions (lanes and 
sidewalks) (Ito et al., 2024; Ki et al., 2023), and different image sources 
and forms (crowdsourced and commercial; perspective and panoramic) 
(Biljecki, Zhao, et al., 2023), to see if they affect how SVI summarizes 
and reflects the same urban environment elements, such as buildings, 
greenery, and sky. It is reported that though reliability of a single, 
crowdsourced imagery is comparable to commercial panoramas 
(Biljecki, Zhao, et al., 2023), there are significant measurement errors 
for sidewalks, greenery, and roads between pedestrian and vehicle views 
(Ki et al., 2023). Additionally, Liu and Sevtsuk (2024) discussed the is-
sues such as lack of clear technical definitions in street attributes 
extracted from SVI, the lag in CV model performance, and the absence of 
benchmarks. Although not the focus of this paper, these issues 
contribute another aspect of uncertainty in the common practices of SVI 
utilization.
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2.2.3. Complexity of real-world environment
Different sampling strategies and parameter selections for SVI pri-

marily test the stability of SVI in mapping diverse urban environments. 
Beyond stability, however, the extent to which SVI can effectively cover 
and represent complex environments remains under-researched. The 
complexity of urban environments can be further explained by the ob-
structions of other environmental instances, and the density and layout 
of the overall built environment and their heterogeneity. Biljecki and Ito 
(2021) and Novack et al. (2020) note that objects frequently analyzed in 
SVI-based studies, such as buildings and trees, are often blocked by other 
street-level elements in the imagery. Specifically, obstructions are one of 
the main issues when using SVI to measure tree size (Liang, Jiang, et al., 
2024), estimate building height (Yan & Huang, 2022) and classify 
building materials (Raghu et al., 2023). The presence of obstructions 
also amplifies the differences in environmental measurements based on 
pedestrian versus vehicle perspectives (Ki et al., 2023).

Additionally, when mapping buildings or trees in urban environ-
ment, obstructions can also be caused by the targeted elements them-
selves (Raghu et al., 2023; Yan & Huang, 2022), which is related to the 
density and layout distributions of element instances in the surrounding 
environment. Obstruction is fundamentally a problem of the relative 
position between the camera and the target element instances. While SVI 
can be collected using relatively standardized procedures, the distance 
and angle between environmental elements and the camera lens can 
vary significantly (Lumnitz et al., 2021; Zou & Wang, 2022; Huang, 
2025). In studies focused on building assessments, some retrieved SVI 
may only show the sides or partial views of buildings due to the variation 
of horizontal angles, which might not provide sufficient façade features 
for classification or evaluation tasks (Zou & Wang, 2022). Furthermore, 
suburban neighborhoods with sparse, wide roads may differ signifi-
cantly in openness from densely packed commercial areas in city cen-
ters. This will affect not only the quantity and distribution of SVI 
collected, but also the completeness and frequency with which SVI 
captures specific environmental elements and instances.

In summary, the complexity of the urban environment introduces 
additional uncertainty in SVI coverage of environmental elements. 
However, compared to data quality problems or impact from SVI usage 
practices discussed in previous sections, it has not been given enough 
attention. There is a notable research gap concerning the extent to which 
SVI accurately covers the spatial instances in the environment, corre-
sponding to the visual elements it aims to represent in the image space. 
Limited and relevant examples are only about the greenness visibility 
(Labib et al., 2021; Yan et al., 2023), where Green View Index (from SVI) 
and Viewshed Greenness Visibility Index (from GIS simulation) are 
compared. The focuses are about the similarity and discrepancies be-
tween the two indicators, rather than element coverage potential of SVI. 
For this reason, new perspective and method are explored to estimate 
the SVI coverage on urban environmental elements in this study, 
quantitatively incorporating the impact from environmental 
complexity. The details are depicted in the following sections.

3. Methodology

A research framework of the study is illustrated in Fig. 1. We propose 
a novel method to estimate element-level coverage of SVI, that in-
tegrates isovist analysis method developed by Benedikt (1979) and 
computer vision technologies. On this basis, comprehensive SVI 
coverage indicators are designed and calculated to describe the SVI 
coverage extents in different dimensions and in multiple geographical 
scales. Utilizing the SVI coverage indicators, we design three experi-
ments to identify the potential bias of SVI in representing built envi-
ronment information in horizontal dimension.

3.1. Element-level SVI coverage estimation

3.1.1. Concept
As SVI can be regarded as the projection of 3D urban environment 

onto 2D image space at specific locations, the coverage of SVI on envi-
ronment elements can be naturally examined both from two perspec-
tives: from the visibility of environmental elements in image space, and 
from the relationship between SVI locations and element locations in the 
geometric space. The dual relationship forms the foundation of the 
proposed SVI coverage estimation method, which is sufficiently adapt-
able to various elements of the built environment.

In this study, urban building facades are chosen as a representative 
element for coverage estimation and bias assessment. This choice is 
motivated by the fact that buildings typically account for a significant 
portion of the visual information captured in SVI and also serve as the 
primary containers of urban functions and activities. Mapping buildings 
as static elements in urban environment is also more common and 
reliable in current research practices compared to mapping dynamic 
elements, such as pedestrians. In addition, by exploring how other 
environmental elements, such as trees or vehicles, obstruct SVI’s 
coverage on building facades, this investigation sheds light on how the 
complexity of urban environment shape the utility and limitations of 
SVI. A two-step workflow for estimating SVI coverage on building fa-
cades is introduced in the following sections.

3.1.2. Step 1 – coverage estimation based on geometric analysis
The SVI coverage on building facades can be first defined in 2D 

space, as the intersection of the visual field of a potential observer at SVI 
location, with respect to the surrounding building instances. The defi-
nition is based on the nature of SVI as the collection of visible street 
elements at specific geographical locations. Practically, the SVI coverage 
can be computed quantitatively based on the isovist analysis method, as 
the proportion of building facades directly visible from SVI locations and 
within a given distance. Buildings serve as both the observed objects and 
the visual obstacles in the analysis, and how frequently and how 
completely the building facades can be visible from SVI locations, 
represent the extent building covered by SVIs.

A Python script is designed to carry out simplified isovist analysis for 
SVI location points. As shown in the workflow illustrated in Fig. 2, 
sampling points in 2 m interval are extracted from the boundaries of 
building footprints, as the unit representation of building facades which 
are potentially visible. A threshold of 50 m is set for isovist analysis, as 
the proximity of the maximum distance where human can achieve an 
efficient observation in complex urban environment. For each SVI 
location, lines of sight are first constructed towards all the building 
samplings points within the distance threshold. The spatial join method 
in ‘GeoPandas’ Python library is then applied to filter lines of sight 
which are not intersected with the surrounding building footprints. Each 
line of sight filtered counts as once a building sampling point can be seen 
via a specific SVI location. While there are existing tools to carry out 2D 
isovist analysis (Leduc, 2024), such as ‘t4gpd’,1 they are not fully 
applicable in our work due to being computationally intensive for this 
kind of analysis. Thus, we develop our own implementation.

3.1.3. Step 2 – coverage validation based on image content
To validate whether the lines of sight are blocked by non-building 

elements in the real street environment, we calculate the absolute an-
gles for lines of sight compared to the true north, and relocate them in 
the image space of SVI, with the SVI metadata of location and heading. 
For each SVI, semantic segmentation is conducted via the Python library 
‘ZenSVI’,2 to detect different street view elements, such as building, 
road, sky, vehicle and greenery (Ito et al., 2024). Then the SVI as a 

1 https://github.com/thomas-leduc/t4gpd/
2 https://github.com/koito19960406/ZenSVI/
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Fig. 1. Research framework. The isovist analysis example is generated based on ‘t4gpd’ Python library.

Fig. 2. A simplified workflow integrating isovist analysis and computer vision technology for estimating the SVI coverage on building facades.
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panoramic image is horizontally divided into 12 pieces with equal angle 
range. Sinusoidal projection is applied to each angle range to restore the 
distortion of street view elements at polar points and suit for an eye-level 
view. The proportion of building elements with respect to the non-sky 
and non-ground elements in the angle range are calculated, as shown 
in Formula B.1. For angle ranges with building proportion below a 
certain threshold, the lines of sight within the ranges can be removed, as 
they are highly likely to be blocked by other street obstacles. By sum-
marizing the remaining lines of sight by building footprints and by local 
geospatial units, we gain a cumulative distribution of SVI coverage po-
tential. More comprehensive indicators can be calculated to describe the 
SVI coverage on building facades in different dimensions.

3.2. SVI coverage indicators

We propose a novel indicator system to describe the extent of 
element-level SVI coverage in two dimensions, namely the completeness 
and frequency. Taking SVI coverage on a single building as an example, 
the completeness indicator measures how thoroughly the open facades 
of a building can be viewed from surrounding panoramic SVIs. Specif-
ically, the Completeness of SVI Coverage for Individual Building (CoC-B) is 
given by the Formula 1, as the ratio of the visible building sampling 
points with respect to all the sampling points that are available from 
public facades for a single building. CoC-B reflects the representative-
ness of building information captured by SVI compared to what building 
conveys in public. In terms of frequency, the indicator represents the 
total number of lines of sight that reach one building and from the 
surrounding panoramic SVIs. Lines of sight between the same SVI and 
building pair, but through different building sampling points are coun-
ted as independent occurrences. Since larger buildings with longer fa-
cades naturally have a higher probability of being viewed, these 
occurrences are weighted by the building’s perimeter. The Frequency of 
SVI Coverage on A Single Building (FoC-B) is given by the Formula 2. A 
higher FoC-B indicates there is a higher probability a building can be 
viewed in urban environment. 

CoC-B =
Useen

Uavail
(1) 

where 

• Useen denotes the actual number of unique sampling points visible 
from the surrounding panoramic SVIs.

• Uavail represents the total number of unique sampling points avail-
able around the building, providing a measure of the potential for 
SVI coverage.

FoC-B =
V
P

(2) 

where 

• V represents the occurrences sampling points from one building 
being visible by panoramic SVIs in the surrounding.

• P denotes the building perimeter, serving as a measure for normal-
izing visibility by the building’s size.

Beyond the building-level indicators, we also design indicators to 
describe the SVI coverage extent at the aggregated level, similarly in the 
dimensions of frequency and completeness. Specifically, the Complete-
ness of SVI Coverage on Buildings in Local Area (CoC-A), is designed to 
describe the proportion of buildings with at least one line of sight 
reached in local areas, such as neighborhoods or census units. The in-
dicator is given by the Formula 3. The indicator can be applied to 
detecting areas with insufficient SVI coverage from building perspective, 
or conversely, evaluating the privacy risk of neighborhoods when 
exposed to SVI. The Frequency of SVI Coverage on Buildings in Local Area 

(FoC-A) denotes the proportion of SVI coverage occurrence on a certain 
building type, relative to the total SVI coverage occurrence across all the 
building types in the local area. Given by the Formula 4, this indicator 
plays a significant role in measuring the impact of a building type on the 
overall character and visual perception of an area. A higher concentra-
tion of SVI coverage of specific building types within an area suggests 
that renovations and improvements to buildings of this type could 
potentially have greater visual and social impacts. Table C.2 in the ap-
pendix provides a summary for all the four SVI coverage indicators. 

CoC-A =
Nseen

Ntotal
(3) 

where 

• Nseen denotes the number of buildings with SVI coverage in the local 
area.

• Ntotal represents the total number of buildings in the local area.

FoC-A =

∑
iVi,type

∑
jVj,total

(4) 

where 

• Vi,type represents the SVI coverage occurrence for the ith building in a 
specific building type in the local area.

• Vj,total represents the SVI coverage occurrence for the jth building 
across all building types in the local area.

4. Case study

A case study is conducted in Greater London, UK, to implement the 
proposed workflow for SVI coverage estimation. Following the results of 
the SVI coverage estimation, the study undertakes three experiments to 
understand the potential bias and uncertainty related to SVI coverage 
and potential data gaps. Further solutions and suggestions are provided 
based on the experiments to help support the robust application of SVI in 
urban research.

4.1. Data collection

The largest and most popular commercial street view service – 
Google Street View (GSV) is selected as the source of SVI data in this case 
study. We achieve a thorough search for all the latest SVI locations in the 
Greater London administrative area, via the official Google Maps API 
and the python library ‘streetlevel’.3 ‘Streetlevel’ provides a feasible 
method to fetch all the available SVI locations by map tiles. The method 
can succeed the traditional SVI collection method relying on road 
sampling points, which may result in an incomplete SVI searching. 
Totally, 2,590,604 SVI location points and their heading directions are 
collected in the Greater London administrative area. We randomly 
sampled 1 % of these location points and analyzed their nearest dis-
tances to neighboring points. It was revealed that over 71.3 % of the 
sampled points had at least one neighboring point within a 10-m buffer. 
In addition to SVI data, the research adapts the building footprint and 
road network data from OSM as the representation of urban environ-
ment elements. Land use data from the Colouring Cities Research Pro-
gramme (CCRP) (Hudson, 2024) is applied to supplement building data 
from OSM, providing representations of building functional types, since 
such information is not always available in OSM (Biljecki, Chow, & Lee, 
2023). Detailed classification information is available in Appendix D.

3 https://github.com/sk-zk/streetlevel/
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4.2. Data management

Considering that the isovist analysis is a computation intensive an-
alytics method, and the datasets collected above contain a large quantity 
of geometry shapes, which can bring challenges to data loading and 
processing, the research employs Uber’s H3 discrete global grid system 
(DGGS)4 to manage the datasets in an efficient manner. The H3 DGGS 
adopts a hierarchical representation to divide Earth’s surface into grids 
at sixteen different resolutions. As illustrated in Fig. 3, the H3 level-7 
grids, which have an average hexagon area of 5.16 km2 and an 
average edge length of 1.40 km, are applied to split SVI locations, 
building footprints and sampling points into smaller groups for isovist 
analysis. Each building sampling point is assigned a unique H3 id and 
building id for further aggregation and statistics analysis. To avoid the 
incomplete analysis for building samplings points at the edge of grid, SVI 
location points and building footprints are indexed in an extended 200 m 
buffer area for each H3 level-7 grid, to ensure building sampling points 
are surrounded sufficiently with potential observers and obstacles in the 
isovist analysis. Given that OSM building footprint data may not always 
be complete (Herfort et al., 2023), we select 41 H3 level-7 grids with 
building footprint completeness over 90 % as case areas in study. The 
building completeness information is referenced from the open dataset 
released from the work by Herfort et al. (2023).

4.3. Experiments

4.3.1. Identifying potential bias in the SVI covered building information
For the Experiment 1, the study aims to detect the potential bias of 

SVI in representing building information. To begin with, we hope to 
know whether SVI coverage achieves an even distribution across 
buildings of different function types and sizes, or it is prone to highlight 
or ignore specific buildings in the built environment. The experiment is 
conducted by comparing interior distribution of the building-level SVI 
coverage completeness indicator, CoC-B, across buildings grouped by 
building types and sizes.

Furthermore, we hope to learn whether the SVI captured building 
information is representative of the building in reality. For building 
function types such as residential, retail, transport etc., we calculate the 
area-level frequency indicator, FoC-A, and their proportion by count in 
OSM in each H3 level-9 grid. By exploring the linear association between 
the two indicators, especially interpreting the correlation scores and the 
regression coefficients, we investigate whether specific building func-
tion types are prone to be over-represented or under-represented in SVI, 
i.e. whether using SVI to map the built environment is biased.

4.3.2. Mapping and explaining poorly represented neighborhoods in SVI
In the Experiment 2, we aim to identify neighborhoods that are not 

adequately represented in SVI. This investigation is based on the hy-
pothesis that even if SVI provides sufficient coverage in terms of spatial 
distribution within a neighborhood, it may still lack adequate coverage 
on building facades or on other environmental elements. Consequently, 
this insufficiency might hinder a comprehensive representation of the 
built environment within the neighborhood. Examining this hypothesis 
could help uncover potential biases in numerous neighborhood-focused 
studies based on SVI data.

The experiment is conducted by comparing the spatial distribution of 
traditionally adopted SVI coverage indicator with the spatial distribu-
tion of new coverage indicators proposed in this study. Specifically, for 
each H3 level-9 grids in the case study area, we aggregate the mean 
values of CoC-B indicators and calculate the CoC-A indicators, as proxies 
of SVI’s capability in covering building facades in local areas. Concur-
rently, referring to previous work by Juhász and Hochmair (2016) and 
Hou and Biljecki (2022), we compute the completeness of SVI coverage 

on road networks in the H3 level-9 grids as benchmarks. The calculation 
detail is described in Appendix E. Utilizing Getis-Ord Gi* analysis, a 
spatial auto-correlation analysis method identifying the hot-spots and 
cold-spots from geo-spatial data, we highlight and compare the spatial 
distribution characteristics of the above mentioned metrics. We further 
compare the local built environment features, such as road density and 
centrality, building size, count and distance, and proportion of street 
view elements of greenery, vehicle and human, between the typical hot- 
spots and cold-spots of above coverage indicators. The aim is to reveal 
the environmental causes of the potential insufficiency in SVI coverage.

4.3.3. Exploring the impact of collection interval on SVI coverage
In the Experiment 3, we aim to investigate the stability of SVI 

coverage on building facades in terms of different SVI collection in-
tervals. This investigation is based on the hypothesis that smaller 
collection interval will increase both the completeness and frequency of 
SVI coverage on the built environment, enhancing the information 
density, but may not suit best for urban research due to the extra re-
dundancies introduced and the uncertainty in distribution.

This investigation starts with resampling SVI locations at different 
intervals along the road networks to simulate different SVI collection 
strategies. For each SVI collection interval and at each H3 level-9 grid, 
the mean values of CoC-B and FoC-B are calculated and aggregated, 
respectively. By observing the variation of the SVI coverage indicators 
relative to different SVI collection intervals, the study hopes to reveal 
the potential bias and uncertainty introduced by different SVI collection 
strategies.

On this basis, Experiment 3 explores whether there is an optimal SVI 
collection interval helping improve the reliability of SVI based urban 
research. Non-linear functions can be fitted to precisely describe the 
variation of CoC-B and FoC-B indicators along different intervals, 
respectively. By analysing the two fitted functions, especially the speed 
of indicator increase or decrease relative to the SVI collection interval 
change, it is hypothesized that we can identify certain intervals which 
enables sufficient completeness of SVI coverage on built environment 
information while helping eliminate the unnecessary redundancy and 
uncertainty.

4.4. Parameters and settings

For the standardization of the study and convenience of expression, 
the Experiment 1 and 2 are carried out based on SVI locations resampled 
at 50-m intervals from the total SVI locations searched. 50-m’s searching 
radius is adopted in the isovist analysis and 50 % of the building element 
proportion is applied to decide whether SVI achieve a coverage on 
building facade on the corresponding directions, thus filtering the isovist 
analysis results. For the Experiment 3, SVI collection intervals increasing 
from 10 m to 95 m in 5 m increments are applied to resample the SVI 
locations. For each interval, the isovist analysis radius is set differently 
in 30 m, 40 m, and 50 m for comparing the experiment results. The same 
50 % of the building element proportion serves as the filter for isovist 
analysis results.

5. Results

5.1. Potential bias in the SVI covered building information

5.1.1. Coverage completeness distribution by building functions and sizes
In Experiment 1, the study first applies CoC-B indicator to investigate 

the completeness of SVI coverage on individual buildings. As a pre-
liminary result, Fig. 4 illustrates the spatial distribution of CoC-B indi-
cator estimated in the case study area. Notable heterogeneity is observed 
in this completeness indicator across individual buildings, which varies 
according to building sizes and locations. Additionally, around 37.6 % of 
total buildings are recorded with CoC-B equal to 0, indicating that SVI 
may fail to reach these buildings within the threshold distance, or the 4 https://h3geo.org/
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buildings are blocked visually by other street elements in SVI.
For buildings with CoC-B more than 0, Fig. 5 depicts distribution of 

CoC-B values across different building types and sizes. It is found that all 
building types exhibit 75th percentile values of CoC-B indicator below 
0.2. This suggests that for the majority of buildings reached by SVI, less 
than 20 % of their public facades can be covered. Notably, residential, 
retail, and mixed-use buildings exhibit significant fluctuations in CoC-B 
distribution, which suggests that the ways SVI achieve coverage on these 
building types can be more diverse. For residential and retails buildings, 
they are also featured with higher 25th percentile values of CoC-B than 
other building types, indicating that these building types tend to be 
covered more completely via SVI. Regarding building size, buildings are 
re-classified into five groups based on perimeter length, from smallest to 
largest. It is consistently observed that buildings with longer perimeters 
exhibit lower CoC-B values, suggesting that larger buildings tend to have 
less complete SVI coverage. Analysis above reveals that the complete-
ness of SVI coverage varies significantly across buildings of different 
types and sizes, and most of buildings exhibit an insufficient complete-
ness in SVI coverage.

5.1.2. SVI covered building information and its original distribution
Beyond completeness, frequency indicators are applied in Experi-

ment 1 to investigate the distribution characteristics of SVI covered 
building information. The aim is to learn whether SVI tends to under- or 
over-represent specific building types in covered visual information, 
relative to their initial proportion in building footprints.

The study first identifies dominant buildings and building types 
within each H3 level-9 grid, by mapping the top 10 % of buildings with 
highest FoC-B in the grids, and colouring the grids according to the 
building types with highest FoC-A values, as illustrated in Fig. 6. 
Buildings with traffic, community services, industrial and business 
functions, along with a multitude of unclassified, large-scale buildings, 
emerge as the individual buildings more frequently viewed and having a 

larger visual impact on the local areas. However, when analyzing 
dominant building types at the grid level, we find that non-residential 
building types are predominantly visible only within the City of Lon-
don, the central area of the case study, and in a few isolated grids. 
Beyond these, residential buildings are the most frequently viewed and 
serve as general background in the building information covered by 
most grids in the study area. According to Table F.4 and the method 
depicted in Appendix G, in total there are 62 % residential buildings 
covered in SVI, which correspond to 66.2 % residential population in the 
study area.

The study further explored the linear association between the fre-
quency of building types viewed in SVI (FoC-A) and the proportion of 
building types existing in the grids, as depicted in Fig. 7. It was found 
that for building types beyond residential and defence, the regression 
coefficients of fitted linear equations are all above 1, indicating that SVI 
tends to over-represent the real presence of these buildings compared to 
in building footprint data in the study area. The pattern is more prom-
inent in industry & business buildings and mixed use buildings, where 
the frequency and the proportion variables present highest correlation 
scores of 0.93 and 0.9, and there are higher coefficients in the linear 
equations. For residential buildings and buildings with defence usage, 
SVI tend to under-represent their presence in the built environment. 
Specifically, for grids with a FoC-A of residential buildings less than 0.8, 
areas with more diverse building function types, an increase of every 1 
unit of residential building proportion only explains about a 0.74 unit 
increase in the frequency of residential buildings viewed. Conversely, 
for grids with residential buildings dominant in visual information, a 
limited increase or decrease in residential building proportion has little 
impact on the frequency with which residential buildings can be viewed 
via SVI.

The interpretation and analysis on the frequency and completeness 
indicators above suggests that information of individual buildings are 
not completely or evenly captured by SVI, and the distribution of SVI 

Fig. 3. The data collection and pre-processing workflow in the case study. Source of the base map data: OpenStreetMap, Greater London Authority.
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Fig. 4. Map illustrating the distribution of CoC-B indicator across the case study area.

Fig. 5. Boxplots showing the distribution of CoC-B for different function types and size quantiles.

Z. Fan et al.                                                                                                                                                                                                                                      Computers, Environment and Urban Systems 117 (2025) 102253 

9 



covered building information may differ from its distribution in original 
form and medium. Additionally, the completeness and frequency in-
dicators can serve as effective tools for understanding the potential bias 
of SVI in representing local environment from a horizontal perspective.

5.2. Poorly represented neighborhoods in SVI

5.2.1. Comparing different SVI coverage measurement methods
In Experiment 2 we hope to investigate, whether SVI achieving suf-

ficient coverage in terms of spatial distribution, is equivalent to SVI 
achieving adequate coverage on building facades. As shown in Fig. 8, 
using the H3 level-9 grid as a basis, we summarized and visualized the 
completeness of SVI coverage of road lengths within the grid, the pro-
portion of buildings reached by SVI relative to all buildings in the grid 
(CoC-A), and the mean value of coverage completeness for individual 
building facades within the grid (CoC-B). Additionally, we visualized the 
hot-spot and cold-spot distribution of these indicators using the Getis- 
Ord Gi* statistics. SVI data was collected from the road networks at 
equal 50 m intervals.

It is found that the three completeness-related indicators show sig-
nificant differences in their numerical and spatial distribution. The 
completeness of road length coverage by SVI within each grid generally 
falls within the high range of 0.8 to 1. Spatially, cold-spots are mainly 
concentrated along the Thames River. In non-riverbank areas, the de-
gree of SVI coverage for road lengths is relatively uniform. In contrast, 
the completeness distribution varies significantly when it comes to 
building facade coverage. Notably, in many grids, only less than 50 % of 
buildings can be reached by SVI. Grids with low CoC-A values are mostly 
located in residential-dominated neighborhoods on the periphery of the 
study area and along the Thames River. Closer to the urban center, the 
proportion of buildings reached by SVI is relatively higher.

The completeness of SVI coverage for individual buildings is even 
lower, with most grids having a mean CoC-B indicator value of less than 
0.1. Higher values are mainly observed in a continuous band in the 
central areas of the City, Camden, and Westminster, as well as in eastern 
residential areas, showing significant local clustering. Low-value grids 
are primarily found in the western and northern peripheral neighbor-
hoods and along the Thames River.

Based on the above analysis, it can be observed that for most local 

areas in the case study area, although SVI coverage can achieve suffi-
cient coverage of the road networks, its ability to capture internal block 
information may be limited, leaving many buildings outside the reach of 
SVI. Additionally, even if SVI reaches a high proportion of buildings 
within neighborhoods, the completeness of individual buildings’ expo-
sure to SVI may still be significantly lacking. These differences further 
indicate that SVI collected through equidistant sampling along the road 
networks may provide misleading information about the built environ-
ment. This is particularly important for research evaluating the external 
environment of buildings at the neighborhood level based on SVI.

5.2.2. Built environment factors impacting SVI coverage
Utilizing Getis-Ord Gi* statistics for completeness indicators on road 

length and building facades, respectively, we rank the h3 grids and 
select the top 5 % and bottom 5 % as typical hot-spots and cold-spots 
characterizing the indicators’ distribution. Fig. 9 compares the distri-
bution of a series of built environment features between the hot-spot and 
cold-spot grids in each completeness indicator.

For coverage completeness on road length, there is only a limited 
difference in built environment features between the hot-spot and cold- 
spot grids. Specifically, the cold-spot grids tend to have relatively lower 
building counts, lower road density, and longer building perimeters 
compared to the hot spots. These characteristics align with their 
consistent distribution along the riverbank, where large buildings clus-
ter and road access is limited. In contrast, significant differences can be 
observed between hot-spots and cold-spots for the completeness indi-
cator on building facades. Cold-spots show lower road density, lower 
building counts, and longer building perimeters. Additionally, these 
cold-spots feature higher proportions of natural and human elements in 
SVI, and significantly lower closeness values. The former indicates that 
greens and humans rather than vehicles may play more positive roles in 
blocking building elements within image space of SVI. While the latter 
suggests that grids far from local urban centers or high streets, and 
deeper within neighborhoods are prone to having poorer coverage of 
building facades.

Fig. 6. Mapping the dominant building instance and building types that show highest frequency to view via SVI in each local area.
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5.3. Impact of collection interval on SVI coverage

5.3.1. Robustness of SVI coverage across different SVI collection intervals
In Experiment 3, we explore how different SVI collection intervals 

impact the values and distributions of SVI coverage indicators. Fig. 10
presents the distribution of CoC-B and FoC-B, the building-level 
completeness and frequency SVI coverage indicators, with SVI collec-
tion intervals increasing from 10 m to 95 m in 5 m increments. The 
observations are mean values of indicators aggregated at h3 level-9 grids 
across the case study area. It can be identified that when applying 
smaller SVI collection intervals, the FoC-B indicators of SVI coverage 
show larger differences between different grids, while the differences 
decrease significantly when larger collection intervals are employed. In 
comparison, the distribution differences of the CoC-B indicators across 
grids are less affected by the SVI collection interval. In addition, the 
decreasing of mean frequency across grids along with the increasing of 
SVI collection interval tend to be faster than the decreasing of mean 
completeness. The results indicate that the completeness indicators 
show stronger robustness to changes in SVI collection interval, in terms 
of spatial distribution and numerical values. In contrast, the frequency 
indicators can be sensitive to lower SVI collection intervals and higher 
SVI density.

5.3.2. Optimal SVI collection intervals for frequency and completeness
Beyond the differences in robustness, the study attempts to explore 

whether there exists an optimal SVI collection interval that achieves 
higher SVI coverage completeness while avoiding unnecessary high SVI 
coverage frequency, taking the speed difference in the decline of fre-
quency and completeness indicators alongside rising SVI collection in-
terval as an entry point.

The study first normalizes the values of completeness and frequency 
in each H3 level-9 grid for each SVI collection interval based on the 
corresponding values at the minimum SVI collection interval within the 
grid. As shown in Fig. 11, plotting the normalized values into the same 
quadrant reveals the trend of both indicators shrinking relative to their 
maximum values as the SVI collection interval increases. It is observed 
that the shrinking speed of frequency is significantly higher than that of 
completeness at lower stages of the SVI collection interval, whether for a 
single grid or on an average level of grids. With the increase in the SVI 
collection interval, the rate of shrinkage for both indicators slows down 
and converges.

Based on this observation, it can be hypothesized that there exists a 
specific interval threshold where the decrease speeds of completeness 
and frequency are equal. Below this interval, the decrease speed of 
frequency exceeds that of completeness, indicating that the reduction in 
redundancy in the environment information captured by SVI is faster 

Fig. 7. Scatter plots showing the association between FoC-A indicator of a specific building type and count proportion of the building type in H3 level-9 grids. The 
correlation coefficient and the formula of the fitted trend line are labeled on each subplot.
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than the decrease in completeness, and it is economical to continue 
reducing the SVI collection interval. Above this interval, the decrease 
speed of frequency is lower than that of completeness, indicating that 
further reducing the SVI collection interval would relatively more 
severely affect the completeness of the environmental information 
captured by SVI. Collecting SVI at this interval threshold can be seen as 
an optimal strategy to balance the completeness and redundancy of the 
information captured by SVI.

To precisely identify the optimal interval, the study attempts to fit 
functions to the normalized values of completeness and frequency at 
different SVI collection intervals in each grid and identify derivative 
curves based on them. The interval corresponding to the intersection 
point of the two derivative curves is considered the optimal interval. 
Polynomial function, power function, logarithm function, and general-
ized additive model (GAM) are applied to fit curves with the observa-
tions, respectively. Among them, the GAM model is identified as the best 
model to capture both the global decreasing trend of completeness and 

frequency indicators (the highest R2) and their subtle changes in local 
regions. Fig. 11 shows that the match between original observations and 
the GAM-fitted curves is significantly better than that for other curves.

Fig. 12 presents the distribution of individual derivative curves fitted 
based on each grid’s completeness and frequency observations, and the 
intersection points from the paired curves. Considering that the distance 
thresholds applied in isovist analysis may also have an impact on the 
distribution of SVI coverage indicators, the figure further compares the 
distribution of curves and intersection points across isovist analysis 
distance thresholds of 30 m, 40 m and 50 m. In general, the derivative 
curves fitted present significant trends for intersecting after SVI collec-
tion interval of around 30 m. More intersection points are densely 
distributed between 50 m - 60 m interval. The increasing of distance 
threshold of isovist analysis shows little impact on the location distri-
bution of intersection points.

Taking analysis results under the isovist analysis thresholds of 50 m 
as an example, Fig. 13 further plots the spatial and data distribution of 

Fig. 8. Distribution of different SVI coverage completeness metrics and the hot-spot analysis results.
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detected optimal SVI collection interval for each H3 level-9 grid. It is 
found that grids with optimal SVI collection intervals around 50 m - 60 
m present a relatively even distribution across grids in the study area, 
without showing significant spatial clustering. The analysis results 
above demonstrate that, it’s possible to employ a consistent and stable 
optimal interval at a large spatial scale for SVI data collection.

6. Discussion

6.1. Uneven SVI coverage at element level

SVI is typically collected at equal intervals along roads to achieve 
even mapping and reliable representation of the urban environment. 
However, Experiment 1 reveals that SVI collected in this manner does 
not translate into uniform coverage of buildings of different types and 
sizes, particularly in terms of facade completeness. Residential and retail 

Fig. 9. Distribution of built-environment related indicators for local hot-spots and cold-spots of SVI coverage on road length and building facades.

Fig. 10. Box plots drawn based on SVI coverage indicators of different local grids and at different SVI collection intervals.
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buildings, and buildings with smaller sizes tend to have more complete 
facade coverage in SVI. Moreover, the distribution of SVI-covered 
buildings does not align with the actual distribution of buildings in 
footprint. Specifically, SVI tends to significantly over-represent building 
types such as mixed use, industry & business, and transport. Community 
and retail buildings are slightly over-represented, while residential 
buildings, especially in suburban areas, are generally under-represented.

The practical impact of these disparities depends on the specific 
research purpose. If SVI is used for urban perception studies focused 
only on visible elements or experiences at SVI locations, uneven 
coverage may not affect reliability. However, using limited SVI data to 
characterize an entire region may over-represent frequently covered 
elements and under-represent others. This implicit prioritization of 
certain environmental elements in SVI can be considered a form of 
spatial weighting, which has been largely overlooked in previous urban 
studies and adds uncertainty to interpretations of SVI-based urban 
perception studies. Nevertheless, the element-level coverage estimation 
method proposed in this study helps address this gap by providing a 
clearer understanding of how different elements and instances are 

represented in SVI data.

6.2. Element-level coverage as a new dimension for SVI data quality

In Experiment 2, the study compares the proposed element-level SVI 
coverage estimation method, which considers both SVI locations and 
environmental obstructions, with traditional methods that only consider 
SVI locations. It is found that, even in regions where traditional methods 
aim to achieve complete SVI coverage, CoC-A and CoC-B indicators are 
often low, reflecting a lack of building instances reached by SVI and 
incomplete facade coverage. The spatial distribution of SVI building 
facade coverage shows strong spatial auto-correlation, with hot-spots 
and cold-spots linked to factors like building size, road network cen-
trality, density, and obstacles like greenery and human. The results 
further explain the implicit prioritization of certain environmental ele-
ments in SVI. It is not determined by the subjective intentions of re-
searchers, but rather by the complex spatial configuration and 
obstruction relations shaped collectively by the roads, buildings and 
other environmental elements.

Fig. 11. Left: Normalized values of CoC-B and FoC-B of different local grids and at different SVI collection intervals, with the mean values highlighted. Right: A 
comparison of curve functions fitted with generalized additive model and other modeling methods, based on the mean values.

Fig. 12. Derivative curves of completeness and frequency across different local grids and under different isovist analysis radii, and the intersection points between 
the paired curves.
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Based on this comparison, we propose introducing the extent of SVI 
coverage on urban environmental elements as a novel dimension in SVI 
data quality assessments. This dimension addresses the impact of envi-
ronmental obstructions on SVI usage. Moreover, it highlights SVI’s ca-
pacity to reveal urban information in the horizontal dimension, 
distinguishing SVI from other data forms such as building footprints or 
satellite imagery, which conventionally provide vertical perspectives. In 
the data quality evaluation framework by Hou and Biljecki (2022), 
environmental obstruction is treated as part of image quality issues. 
However, we argue that obstruction-related problems should be 
considered as an external dimension. Obstruction, such as buildings 
blocked by vegetation or other buildings, may not occur randomly but 
instead follow patterns related to spatial and socioeconomic factors, 
such as residential density.

The method proposed in this study was tested using Google Street 
View and commercial SVI in general, but it can also be applied to vol-
unteered street view imagery (VSVI) sources, only if key SVI metadata is 
available. For panoramic images, this includes image heading and co-
ordinates, while for perspective images, additional information such as 
field of view (FOV) and rotation is required. If SVI data quality is low or 
reference data, such as building footprints, is incomplete, the proposed 
method can be supplemented with additional approaches. In such cases, 
the relationship between SVI coverage extent and built environment 
features can be modeled in areas with sufficient data, and this model can 
then be used to infer the bias risks of SVI coverage in regions lacking 
adequate data, guiding the data collection and utilization strategies. The 
global OSM building completeness dataset created by Herfort et al. 
(2023) serves as a relevant example of this approach. Overall, our 
element-level SVI coverage estimation framework demonstrates signif-
icant potential to enhance the reliability of SVI in urban analysis and 
perception studies, with broad applications across related fields.

6.3. Does an optimal SVI collection interval really exist?

In this study, we also test the impact of different SVI collection in-
tervals on the element-level SVI coverage. The building-level 
completeness and frequency indicators, CoC-B and FoC-B, act as a pair 
of complementary indicators to determine whether the SVI coverage of 

building information is sufficient and whether there is potential 
redundancy. By calculating these indicators across various intervals, we 
found that a 10 m sampling interval significantly increases the average 
completeness and frequency of SVI coverage for element instances 
compared to a 50 m interval, which can notably influence subsequent 
analysis based on SVI. This result aligns with the findings of Kim et al. 
(2021).

Our study goes further by revealing that CoC-B and FoC-B decrease 
non-linearly as the SVI sampling interval increases, but at different rates. 
We identified a critical interval: below this threshold, the frequency 
indicator (FoC-B) decreases faster than the completeness indicator (CoC- 
B); above it, the reverse occurs. This suggests that SVI collected near this 
critical interval threshold balances higher building coverage complete-
ness with lower redundancy, maximizing cost-effectiveness. Further 
analysis confirmed this critical interval, typically ranging between 50 m 
and 60 m, is consistently distributed across most local grids, supporting 
current common practices and providing valuable guidance for future 
SVI-based urban research.

Nevertheless, due to the diverse use cases of SVI, a universal SVI 
sampling interval may not exist for all applications. The intervals 
identified in this study are mainly suited for SVI as a comprehensive 
visual representation of the environment, particularly for applications 
such as spatial perception and experience studies. However, for mapping 
specific environmental elements, such as buildings or trees, smaller in-
tervals and denser SVI sampling—while introducing more redun-
dancy—can effectively enhance coverage completeness and reduce data 
gaps.

7. Conclusion

This paper introduces a comprehensive workflow to estimate the 
element-level coverage of SVI, taking urban building facades as an 
example, and has further explored the potential of coverage extent as 
novel indicators in validating the usage of SVI in urban and spatial an-
alytics. Our study shows that, despite dense availability on urban road 
networks, SVI only reaches 62.4 % of buildings in the case study area. 
The completeness of SVI coverage on building facades remains low, 
averaging 12.4 %, with large differences depending on building types 

Fig. 13. Spatial and data distribution of optimal SVI collection intervals detected from each H3 level-9 grid in the case study area.
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and sizes. Further, besides revealing data gaps and inconsistent 
coverage, our results indicate questionable representativeness of SVI — 
there are biases in the information collected from SVI, with some in-
stances being over- or under-represented. These biases can impact the 
integrity of urban studies relying on SVI. For example, if one is using SVI 
to infer the share of certain building types in streets, with some instances 
being omitted more often than others in the images collected from cars 
on roads, the result would not be entirely accurate.

A potential range of optimal SVI sampling intervals, 50–60 m, is 
identified to help achieve a better application of SVI data. SVI data has 
been used widely across multiple disciplines, but data quality and 
integrity have not been given adequate attention. Regarding both the 
infrastructural and human aspect, for the first time, we reveal at a very 
high resolution and large-scale, the reach and usability of SVI for urban 
sensing and mapping. Our study argues that the element-level coverage 
of SVI, with respect to building, greenery, and other useful street view 
elements and visual information, should be included as a new dimension 
for SVI data quality assessment.

Nonetheless, the study has some limitations that offer opportunities 
for future work. We believe that the findings and results will depend on 
the particular context — our study focuses on a particular use case 
(mapping buildings) in a particular location (London), so further in-
vestigations are necessary. Next, to balance detail and scalability, the 
study does not fully account for variations in building heights within the 
SVI coverage estimation workflow. However, it is possible that even if 
one building is blocked by another building according to the 2D isovist 
analysis based on building footprints, part of the blocked building may 
still be visible from SVI due to differences in building heights. Incor-
porating 3D urban data, such as Digital Surface Models (DSM) and 
LiDAR point clouds, along with 3D isovist analysis, presents opportu-
nities to enhance analytic precision in future developments. Another 
concern is the limitation of SVI in capturing temporal variation, 

especially in measuring dynamic street objects, such as pedestrians and 
vehicles, and in reflecting the seasonal change of vegetation (Liu & 
Sevtsuk, 2024; Yan et al., 2023). The limitation introduces disturbance 
when incorporating environmental obstructions in the element-level SVI 
coverage estimation.
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Appendix A. An overview of studies on mapping and sensing urban environmental elements using SVI data

Table A.1 
Overview of latest studies on mapping and sensing urban environmental elements using SVI data, with a focus on individual elements such as roads, 
buildings, greenery, and the use of combined elements.

Elements Use Cases References

Road Damage detection Ren et al. (2023)
Sidewalk mapping Hamim et al. (2024), de Mesquita et al. (2024), Ning, Ye, et al. (2022)
Wheelchair usage Ning, Li, et al. (2022)

Building Perception on exteriors Liang, Chang, et al. (2024)
Building typology Gonzalez et al. (2020)
Building height Yan and Huang (2022)
Age and style Sun et al. (2022)
Building material Raghu et al. (2023)
Building color Zhou et al. (2023)
Building usage Ramalingam and Kumar (2023, 2025)
Energy efficiency Mayer et al. (2023)
Seismic vulnerability Ruggieri et al. (2021), Aravena Pelizari et al. (2021)
Flood risk Xing et al. (2023)
Abandoned houses Zou and Wang (2022)

Greenery Green View Index distribution Zhang and Zeng (2024)
Greenery visibility Sánchez and Labib (2024)
Trees mapping Liu, Jiang, et al. (2023), Lumnitz et al. (2021)
Tree species detection Choi et al. (2022)
Crop types detection Yan and Ryu (2021)
Street forest Liang, Serge, et al. (2023)
Impression and perceptions Ogawa et al. (2024), Dong et al. (2023), Inoue et al. (2022)
Road safety and accidents Ye et al. (2024), Yu et al. (2024)
Gentrification Thackway et al. (2023)
Potential of urban renewal He et al. (2023)

Combined 
Elements

Poverty Yuan et al. (2023)
Spatial quality Rui and Cheng (2023)
Physical disorder Chen et al. (2023)

(continued on next page)
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Table A.1 (continued )

Elements Use Cases References

Temporal evolution Liang, Zhao, and Biljecki (2023)
Violent crime, travel and health behavior Fan et al. (2023)

Appendix B. Building threshold calculation

With Formula B.1, we calculate the proportion of general building elements (buildings, walls, fences) with respect to all non-void, non-flat, and 
non-sky elements. The proportion serves as threshold to examine whether in the line of sight direction, building facades are visible effectively from SVI 
location and to quantify the potential impact of environmental obstructions such as vehicles, trees, and pedestrians on SVI coverage. Label id and 
colormap from the Cityscapes segmentation benchmark is applied (Cordts et al., 2016). The proportion calculated serves as a threshold to help filter 
the lines of sight that reach building facades for each SVI. 

Pbuilding =

∑
i∈B Ai

∑
j∈(ℰ\{void,flat,sky} )Aj

(B.1) 

where: 

• B : The set of selected building elements, which includes: Building (id = 11), Wall (id = 12), Fence (id = 13).
• Ai: The area of element i.
• ℰ\{void, flat, sky}: The set of all elements excluding the following categories:
- Void: Unlabeled (id = 0), ego vehicle (id = 1), rectification border (id = 2), out of ROI (id = 3), static (id = 4), dynamic (id = 5), ground (id = 6).
- Flat: Road (id = 7), sidewalk (id = 8), parking (id = 9), rail track (id = 10).
- Sky: Sky (id = 23).

Appendix C. Summary of the completeness and frequency indicators

The study proposes an indicator system to describe the extent of SVI coverage on building element. Below is a table summarizing the SVI coverage 
indicators proposed and applied in the study.

Table C.2 
Dimensions, Metrics, and Description of SVI Coverage.

Dimensions Metrics Description

Building 
Level

Completeness of SVI Coverage for Individual 
Building (CoC-B)

Proportion of SVI-covered sampling points relative to the total available sampling points for a single building.

Frequency of SVI Coverage for Individual Building 
(FoC-B)

Number of occurrences SVI achieves coverage around a single building, adjusted for building perimeter.

Area Level Completeness of SVI Coverage on Buildings in 
Local Area (CoC-A)

Proportion of SVI-covered buildings relative to the total number of buildings in a local area.

Frequency of SVI Coverage on Buildings in Local 
Area (FoC-A)

Sum of SVI coverage frequency for specific building types (not adjusted), relative to the total SVI coverage 
frequency for all buildings in the local area.

Appendix D. A re-classification of OSM building types

The study adopts building-level land use data from the Colouring Cities Research Programme (CCRP), an open building data project managed by 
The Alan Turing Institute, as the basis for categorizing building footprints into different types. Building type information from OSM is also utilized as a 
complement for building footprints whose land use information is missing.

Table D.3 
Corresponding between CCRP land use types and OSM building types. The study gives priority to the CCRP land use data corresponding to the building footprint. In 
cases where land use data is missing, if the OSM building type information is not empty, then convert the OSM classification into the corresponding land use categories.

CCRP Land Use Types OSM Building Type Labels

Residential ‘apartments’, ‘flats’, ‘house’, ‘terrace’, ‘detached’, ‘semidetached_house’, ‘dormitory’, ‘hall_of_residence’, ‘cottage’, ‘bungalow’, ‘terrace_house’, 
“council_flats’, ‘farm_auxiliary’, ‘farm’, ‘houseboat’, ‘stable’, ‘cabin’, ‘terraced_house’,”Nursery,_School’, ‘yes;dormitory’

Mixed Use ‘yes, office, shop, r’, ‘apartments;residenti’, ‘apartments;yes’, ‘commercial;detached’, ‘retail;yes’
Industry and Business ‘office’, ‘data_center’, ‘commercial’, ‘warehouse’, ‘industrial’, ‘light_industrial’, ‘factory’, ‘manufacture’, ‘office;yes’, ‘telecommunication’, ‘business’, 

‘artists_studio’
Community Services ‘church’, ‘university’, ‘school’, ‘government’, ‘public’, ‘hospital’, ‘college’,’Community_Building’, ‘kindergarten’, ‘memorial’, ‘student_residence’, 

‘gatehouse’, ‘cafe’, ‘greenhouse’, ‘monument’, ‘pavilion’, ‘palace’, ‘mosque’, ‘synagogue’, ‘police_station’, ‘religious’, ‘clock_tower’, ‘village_hall’, 
‘conservatory’, ‘chapel’

Retail ‘retail’, ‘pub’, ‘kiosk’, ‘stall’, ‘bar’, ‘shop’
Transport ‘train_station’, ‘transportation’, ‘ship’, ‘boat’, ‘bridge’, ‘railway_arch’, ‘railway’, ‘bus’, ‘viaduct’, ‘tunnel_mouth’, ‘tunnel_entrance’, ‘bus_garage’

(continued on next page)
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Table D.3 (continued )

CCRP Land Use Types OSM Building Type Labels

Recreation and Leisure ‘civic’, ‘hall’, ‘ruins’, ‘stadium’, ‘recreational’, ‘gallery’, ‘theatre’, ‘cinema’, ‘museum’, ‘sports_centre’, ‘sports_hall’, ‘swimming_pool’, ‘parking’, ‘yes;public; 
sports_ce’

Utilities and 
Infrastructure

‘service’, ‘construction’, ‘roof’, ‘vent_shaft’, ‘air_shaft’, ‘ventilation_shaft’, ‘electricity’, ‘substation’, ‘gasometer’, ‘air_vent’, ‘tunnel_shaft’, ‘water’

Vacant and Derelict ‘vacant’, ‘disused_station’, ‘abandoned’, ‘ruins’
Defence ‘guardhouse’, ‘bunker’, ‘barracks’
Unclassified ‘None’, ‘yes’, ‘no’, ‘multiple’, ‘part’

Appendix E. Completeness of SVI coverage on road networks

The completeness of SVI coverage along the road networks is calculated according to the Formula E.1. Buffering analysis with a radius of 50 m is 
carried out based on each SVI location. Then we calculate the proportion of buffered road length with respect to the total road length within each local 
area. 

SVICoverageroad =

∑
r∈ℛLr

∑
t∈T Lt

(E.1) 

where: 

• ℛ : The set of road segments covered within a 50 m buffer around SVI locations.
• Lr : The length of road segment r within the buffered area.
• T : The total set of road segments in the local area being analyzed.
• Lt : The total length of road segment t in the local area.

Appendix F. Completeness distribution by building functions and sizes

For buildings with different type and size labels, Table F.4 compares how the proportions of SVI covered buildings vary. Approximately 62.4 % of 
the total buildings are visible from at least one SVI location within the case study area.

Table F.4 
The table illustrates the proportion of buildings in different types and sizes that have at least one sampling point visible from SVI locations and the related CoC-B values. 
The results are based on SVI locations resampled with a 10 m interval and the isovist analysis carried out based on a radius of 50 m. The visible building sampling points 
are filtered with a threshold that the building element proportion visible along the observing direction should be over 50 %.

Building Type Proportion of SVI Covered Building Mean Completeness (All) Mean Completeness (SVI Covered)

Building Function
Residential 0.619621 0.077682 0.125371
Retail 0.698083 0.105884 0.151678
Industry And Business 0.796421 0.052092 0.065407
Mixed Use 0.829787 0.089946 0.108397
Community Services 0.642818 0.027731 0.043140
Recreation And Leisure 0.507937 0.023605 0.046472
Transport 0.675287 0.049409 0.073167
Utilities And Infrastructure 0.421053 0.021906 0.050206
Defence 0.300000 0.029499 0.083163
Vacant And Derelict 0.500000 0.016393 0.032787
Unclassified, presumed non-residential 0.820789 0.041508 0.050571
Unlabeled 0.595276 0.072217 0.121317
Building Size (Perimeter Ranking)
Q1 (0–20 %) 0.532637 0.104767 0.196695
Q2 (20 %–40 %) 0.594441 0.095654 0.160915
Q3 (40 %–60 %) 0.615115 0.084116 0.136748
Q4 (60 %–80 %) 0.626316 0.067932 0.108462
Q5 (80 %–100 %) 0.750752 0.036253 0.048288

Appendix G. Estimation of SVI covered population

The research aims to understand to what extent the SVI coverage of residential buildings also achieves coverage of the total population within the 
study area. The study uses the proportion of residential buildings visible in the SVI at the H3 level-9 grid as a rough representation of the SVI coverage 
rate of the population in each grid. At the same time, Meta 30 m precision population data is used to estimate the number of people in each H3 grid. 
The proportion of total population covered in SVI can be calculated based on the Formula G.1. Based on the proportion of residential buildings 
covered, it is estimated that approximately 66.2 % of the total population in the study area can be covered by SVI. 

Total Population Covered in SVI =
∑

n
(CoC − Ar ×Pn) (G.1) 
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where: 

• CoC − Ar represents the completeness of SVI coverage on residential buildings in the nth grid.
• Pn denotes the population in the nth grid.
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